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The correspondence rules of Miller, determining semiclassical approximations for general quantum amplitudes
〈x2|x1〉, are formulated in a way that is analogous to the initial value representation (IVR) treatments of the
propagator. The semiclassical formulas obtained in this way do not require numerical searches, are free from
caustic singularities, and are often uniform approximations. However, to develop treatments that retain the
power and generality of Miller’s rules, it is necessary to overcome boundary condition difficulties that arise
when thex’s are not Cartesian coordinates. Such problems can be solved by replacing Gaussian factors,
analogous to those appearing in existing IVR treatments of the propagator, with more general non-Gaussian
functions. It is suggested that factors of this kind can be obtained from certain IVR representations for wave
functions that are exact for particular model systems. Examples of such factors are presented, and the resulting
theory is illustrated. In one application, an IVR expression for the elastic scattering differential cross section
that is uniform for all angles is developed and tested.

I. Introduction

W. H. Miller is widely and justifiably recognized as one of
the key leaders in the development of modern semiclassical
theory. It is safe to say that almost everyone who has engaged
in the application of semiclassics to molecular dynamical
processes over the past thirty-plus years has been strongly
influence by his pioneering work. Of his many highly important
contributions to this field, however, perhaps his most funda-
mental and elegant work is his formulation of the general
classical/quantum correspondence relations. First developed as
tools for the derivation of classicalS-matrix expressions,1,2 these
relations were subsequently elaborated and presented in a more
general context in his classicAdVances in Chemical Physics
articles.3,4 In these latter works, Miller demonstrated that most
objects of quantum mechanical importance can be expressed
as inner products (or quantum amplitudes) of the form〈x2|x1〉,
where the|x〉’s are states corresponding to classical position or
momentum variables. Miller showed that semiclassical ap-
proximations to these quantum amplitudes can be expressed
compactly and generally in terms of the classical generating
functions for canonical transformations between the variables
x1 and x2. The resulting expressions, which we refer to as
the Miller correspondence relations (MCRs), provide short
cuts to the derivation of semiclassical formulas for wave
functions, propagators,S -matrix elements, Franck-Condon
factors, Clebsch-Gordan coefficients, and many additional
quantities.

The purpose of the present work is to re-express the MCR in
a form that makes them more useful for numerical applications.
We thus begin, in section II, with a short review of the MCR
and a discussion of certain known problems that arise in their
application. In section III, we present an alternative formulation
of the correspondence relations that alleviates some of these
difficulties but that still has disadvantages that obstruct its

general use. In section IV, we suggest some modifications to
our treatment that overcome these problems, and in section V,
we present some examples of the new treatment including
numerical results. Finally, in section VI, we summarize and
discuss our work.

II. The Miller Correspondence Relations

Miller’s semiclassical formulas for the quantum amplitudes
〈x2|x1〉 are expressed in terms of the classical generating function
F(x2,x1) for the canonical transformation from variables (x1,y1)
to variables (x2,y2). In the notation used here,x1 and x2 are
N-dimensional vectors containing elementsx1i and x2i, where
N is the number of degrees of freedom for the system treated
and xki is a classical canonical variable for thei-th degree of
freedom. Each such variable may, independently, be either a
coordinate- or momentum-type variable. Similarly,y1 and y2

areN-dimensional vectors containing elementsy1i andy2i that
are conjugate tox1i andx2i; i.e., if xkj is a coordinate, thenykj

will be a momentum, and vice versa. If all elements inx1 are
of the same gender (coordinate or momentum) and all elements
of x2 are also of a particular gender, the generating functions
can be classified as being of typesF1, F2, F3, or F4 in
Goldstein’s5 notation. The transformation5 from (x1,y1) to (x2,y2)
can be obtained from the generating functionF by applying
the relations

and solving for (x2,y2) in terms of (x1,y1). Here we have de-
fined S1 andS2 to beN × N diagonal matrixes with elements
(S1)ij ) (s1i)δij and (S2)ij ) (s2i)δij, whereski ) +1 if xki is a
coordinate and-1 if xki is a momentum.† Part of the special issue “William H. Miller Festschrift”.

∂F(x2,x1)

∂x2
) S2y2 (2.1)

∂F(x2,x1)

∂x1
) -S1y1 (2.2)
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In terms of this notation, Miller’s correspondence relations1-4

for the quantum amplitudes〈x2|x1〉 can be expressed compactly
as

The sum appearing in eq 2.3 arises becauseF is generally a
multivalued function of (x2,x1) and all values ofF consistent
with (x2,x1) contribute to〈x2|x1〉.

Despite the great theoretical and practical importance of the
MCR, a few important difficulties surface when applications
are attempted. One problem is related to the nature of the second
derivatives appearing in eq 2.3. It is known that these quantities
can become infinite for certain values ofx1 or x2, referred to as
caustics, so that the semiclassical approximation of eq 2.3 breaks
down at such points. Thus, the MCR formulas are only primitive
semiclassical (PSC) expressions: they do not tend to the exact
quantum results uniformly asp f 0 for all x1,x2. This limits
the usefulness of the MCR for direct applications. As a
consequence, the MCRs are often used as starting points for
the derivation of uniform semiclassical (USC) approximations6-12

that remain valid at the caustics. Generally, the development
of such uniform treatments can be complicated for multidimen-
sional systems.7-13

A second problem that arises in applications of the MCR is
associated with the multivalued property ofF and the appear-
ance of the summation in eq 2.3. We note that each term in
the summation corresponds to a particular point (x1,y1) [or,
equivalently, (x2,y2)] in phase space that is consistent with
the given values of the variables (x1,x2). Finding such points
generally requires a numerical search. In some cases, the
number of points and, thus, the number of terms contributing
to eq 2.3 can be very large, and their determination can be
difficult.14

In cases where the〈x2|x1〉 represent propagators15 and wave
functions,16,17 it is known that the problems described above
can be alleviated by expressing these quantities as certain
integrals over classical trajectories. For the propagator case, these
integral expressions are usually known as initial value repre-
sentation (IVR) formulas,6,15,18-58 and we will use this term to
describe analogous integral expressions that arise for other cases,
even when this name is not literally appropriate. Our objective
in this paper is to convert the MCR directly to the IVR form so
that the problems described above can be reduced for more
general kinds of〈x2|x1〉.

III. Gaussian IVR Treatment of the MCR

A. Expressions.IVR expressions of the MCR can essentially
be written down by inspection, in direct analogy with existing
IVR formulas for the propagator.15 As in the propagator case,
there are three principal forms for these expressions. We refer
to these as being of types LR, L, or R, depending on whether
they contain Gaussian factors that depend on bothx2 and x1,
only x2, or only x1, respectively. Explicitly, the three forms
are:

1. LR-Form.In this case, the quantum amplitude is given by

where theG is the N-dimensional Gaussian coherent state
function of the form

with Sij ) siδij and si ) (1, according to whetherxi is a
coordinate or momentum, respectively. In this expression,Γ is
a complex symmetric matrix; it may be chosen arbitrarily,
provided that the real part of each eigenvalue is positive and
finite. The pre-exponential factorC is given by

where Sh ij ) sjiδij and sji ) (1, according to whetherxji is a
coordinate or momentum, respectively. As before,x1 and x2

are N-dimensional vectors whose elements are variables that
may be of either gender (coordinate or momentum), whiley1

andy2 are vectors containing the variables conjugate tox1 and
x2, respectively. TheN-dimensional vectorsx and y contain
variables of same gender asx1 andy1, respectively, so ifx1j is
a momentum, thenxj is also a momentum, whiley1j andyj are
coordinates. Similarly,xj andyj contain variables of same gender
asx2 andy2, respectively.

In eq 3.1, the barred variables (xj,yj) are considered to be
functions of the integration variables (x,y) and are obtained by
applying the canonical transformation generated byF(xj,x) to
(x,y). It is important to note this procedure yields a unique value
for the variables (xj,yj) and for the functionF(xj,x) for each value
of (x,y).

The validity of this IVR expression can be established by
noting that that it reduces to the MCR expression for〈x2|x1〉
[eq 2.3] when the integrals are evaluated by the lowest-order
stationary phase (SP) approximation. The details of the proof
are almost identical to those given in ref 15 and will not be
repeated here. Since such a SP treatment becomes exact in the
classical limit (except at caustics), our expression approaches
the MCR in the classical limit (except at caustics where the
MCR break down). This establishes that eq 3.1 is a semiclassical
approximation.

It may seem surprising that eq 3.1 apparently lacks the
symmetry implied by the relation〈x2|x1〉 ) 〈x1|x2〉*. Neverthe-
less, this symmetry property is obeyed by this expression. This
can be shown by (a) using the result that the Jacobian for a
canonical transformation is unity to replace the integration
variables in eq 3.1 with (xj,yj), i.e.

and (b) applying the “direct conditions” for a canonical
transformation59 to expressC as

In the new expression for〈x2|x1〉, the unbarred variables (x,y)
are regarded as functions of the barred variables (xj,yj). Compar-
ing eq 3.5 with eq 3.3, we see thatC(xj,yj;x,y) ) C(x,y;xj,yj)*, if

〈x2|x1〉 ) ∑x( -1

2πip)N

det[S2

∂
2F

∂x2∂x1

S1] eiF(x2,x1)/p (2.3)

〈x2|x1〉 ) ( 1
2πp)N∫ dx ∫ dy GΓ2

(x2;xj,yj) ×
C(xj,yj;x,y) eiF(xj,x)/pGΓ1

/ (x1;x,y) (3.1)

GΓ(x1;x,y) ) e-(x1-x)TΓ(x1-x)/p eiyTS(x1-x)/p (3.2)

C(xj,yj;x,y) ) ( 1
2πip)N/2 ×

[det(- ∂yj
∂x

S + 2iShΓ2
∂xj
∂x

S + 2i
∂yj
∂y

Γ1
/ + 4ShΓ2

∂xj
∂y

Γ1
/)]1/2

(3.3)

〈x2|x1〉 ) ( 1
2πp)N∫ dxj ∫ dyj GΓ2

(x2;xj,yj) ×
C(xj,yj;x,y) eiF(xj,x)/pGΓ1

/ (x1;x,y) (3.4)

C(xj,yj;x,y) ) ( 1
2πip)N/2 ×

[det(∂y
∂xj

Sh + 2i
∂y
∂yj

Γ2 + 2iSΓ1
/ ∂x
∂xj

Sh - 4SΓ1
/ ∂x
∂yj

Γ2)]1/2
(3.5)
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Γ1 and Γ2 are switched. Thus, recognizing thatF(xj,x) )
-F(x,xj) [as implied by eq 2.2], it is clear that eqs 3.1 and 3.4
are consistent with the expected symmetry property.

2. L-Form.For this case, the amplitude〈x2|x1〉 is given by

where

and (xj,yj) are regarded as functions of (x1,y1). Equations 3.6
and 3.7 may be derived from eqs 3.1 and 3.3 by considering
the special case whereΓ1 ) γ11 and then by lettingγ1 f ∞,
which produces anN-dimensionalδ function δ(x - x1) in the
integral. As in the case of the LR expression, eq 3.6 also reduces
to the PSC MCR formula when the integral overy1 is evaluated
by a SP treatment.

3. R-Form.Here, the quantum amplitude is given by the
expression

where

and (x,y) are treated as functions of (x2,y2). This result may be
derived from eqs 3.4 and 3.5 by examining the case whereΓ2

) γ21 in the limit asγ2 f ∞. When the integral overy2 is
performed by the SP technique, eq 3.8 again reduces to Miller’s
PSC expression for〈x2|x1〉, verifying its status as a semiclassical
approximation.

It is possible to relate the IVR expressions presented above
to earlier work by Heller60 and Weissman,61 who generalized
the MCR to situations where|x1〉, |x2〉, or both may be Gaussian
coherent states. At least in some cases, our IVR expressions
can be derived from their formulas for〈x2|x1〉 by a technique
analogous to that recently applied by Grossmann and Xavier62

to obtain the Herman-Kluk18 formula from the coherent state
representation of the propagator. However, the approach to the
verification of our results used above is simpler and more easily
applicable for the treatment to be presented in section IV.

B. Examples. It is useful to verify that our general IVR
expressions reduce to familiar results in special cases.

1. Propagator.The time-dependent propagator (in the coor-
dinate representation) may be defined as

where

Ĥ is the Hamiltonian operator, andqi are coordinates. The
generatorF for the dynamical transformation from variables
(q1,p1) at time 0 to (q2,p2) at timet is given by the action integral
(Hamilton’s principal function)

whereH is the classical Hamiltonian function andqτ and pτ
are the coordinate and momentum at timeτ along a classical
trajectory fromq1 to q2.

If this choice for generating function is substituted into the
MCR expression, eq 2.3, and the phase of the pre-exponential
factor is correctly interpreted, one obtains the well-known Van
Vleck63-Gutzwiller64 semiclassical expression for the propaga-
tor.3 On the other hand, if this generating function is substituted
into our LR-form IVR expression, eqs 3.1 and 3.3, we obtain

and

where (x,y) has been replaced by (q0,p0), the initial coordinates
and momenta of the system at time 0, and (xj,yj) has been
replaced by (qt,pt), the values of these variables after their
classical propagation to timet. Neither q0 nor qt need to be
identical withq1 or q2. We can recognize eq 3.13 as a slight
generalization of the well-known Herman-Kluk18 semiclassical
propagator expression to the case where the matrixesΓk may
be nondiagonal.

If we apply the generating function of eq 3.12 to our L-form
IVR expression, we obtain the following result for the propaga-
tor:

with

where (xj,yj) has been replaced by and (qt,pt), the variables
obtained by running a trajectory from point (q1,p1) at time 0 to
time t. Equation 3.15 has been used, in various forms, as an
IVR expression for the propagator in several calculations.26,32,37

Generally, it appears to be less accurate than the Herman-Kluk
approximation.26

Finally, if the generating function of eq 3.12 is applied to
our R-form IVR expression, the semiclassical propagator
becomes

with

where (x,y) in eqs 3.8 and 3.9 has been replaced by (q0,p0), the
variables obtained by propagating (q2,p2) backward from time
t to time 0. Equation 3.17 is a final value representation (FVR)

Kt(q2,q1) ) ( 1
2πp)N∫0

t
dq0 ∫0

t
dp0 GΓ2

(q2;qt,pt) ×
C(qt,pt;q0,p0) eiS(qt,q0)/pGΓ1

/ (q1;q0,p0) (3.13)

C(qt,pt;q0,p0) ) ( 1
2πip)N/2

×

[det(-
∂pt

∂q0
+ 2iΓ2

∂qt

∂q0
+ 2i

∂pt

∂p0
Γ1
/ + 4Γ2

∂qt

∂p0
Γ1
/)]1/2

(3.14)

Kt(q2,q1) )

( 1
2πp)N∫ dp1 GΓ

/(q2;qt,pt) B(qt,pt;p1) eiS(qt,q1)/p (3.15)

B(qt,pt;p1) ) [det(∂pt

∂p1
- 2iΓ

∂qt

∂p1
)]1/2

(3.16)

Kt(q2,q1) )

( 1
2πp)N∫ dp2 A(p2;q0,p0) eiS(q2,q0)/p GΓ

/(q1;q0,p0) (3.17)

A(p2;q0,p0) ) [det(∂p0

∂p2
+ 2iΓ*

∂q0

∂p2
)]1/2

(3.18)

〈x2|x1〉 ) ( 1
2πp)N∫ dy1 GΓ(x2;xj,yj)B(xj,yj;y1) eiF(xj,x1)/p (3.6)

B(xj,yj;y1) ) [det( ∂yj
∂y1

- 2iShΓ ∂xj
∂y1

)]1/2
(3.7)

〈x2|x1〉 ) ( 1
2πp)N∫ dy2 A(y2;x,y) eiF(x2,x)/pGΓ

/(x1;x,y) (3.8)

A(y2;x,y) ) [det( ∂y
∂y2

+ 2iSΓ*
∂x
∂y2

)]1/2
(3.9)

Kt(q2,q1) ) 〈q2|q1t〉 (3.10)

|q1t〉 ) exp(-iĤt/p)|q1〉 (3.11)

S(q2,q1) ) ∫0

t
[pτ

Tq3 τ - H(qτ,pτ)] dτ (3.12)
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formula and is related to “time-reversed” expressions for the
propagator used in some semiclassical treatments.23-25,57

2. Time-Independent WaVe Function.In the notation of the
MCR, time-independent wave functions for integrable systems
are denoted byψJ(q) ) 〈q|J〉, whereq denotes the coordinate
variables andJ represents the quantized action variables
associated with the state. TheF2-type generating functionF(q,J)
for the transformation from action-angle variables (J,θ) to
ordinary coordinates and momenta (q,p) is Hamilton’s charac-
teristic function

If this choice forF is substituted into the MCR expression, eq
2.3, and the phases of the various terms in the sum are correctly
interpreted, one obtains the standard multidimensional WKB
semiclassical formula for the wave function. If, on the other
hand, this expression for the generating function is substituted
into our L-type IVR expression, eqs 3.6, we obtain

where

To obtain these results, we have identified the following: (x1,y1)
with the action and angle variables (J,θ); x2 with q, the Cartesian
coordinate at which the wave function is to be evaluated; and
(xj,yj) with (qj,pj), the Cartesian coordinate and momentum
corresponding to (J,θ).

The IVR expression for the wave function, eq 3.20, has been
previously presented and studied.16,17 It resembles the frozen
Gaussian approximation (FGA) formula for the wave function
proposed earlier by Heller.65 However, unlike the FGA, eq 3.20
becomes exact in the classical limit and is thus a true
semiclassical approximation. In addition, it has been shown that,
with appropriate choices forΓ, eq 3.20 is actually a USC
approximation that tends to the exact wave function uniformly
for all q asp f 0.16,17Calculations verify that this semiclassical
treatment is capable of high accuracy.16,17

In additional to the L-type formula, eq 3.20, it is clearly
possible to propose LR- and R-type expressions for the wave
function on the basis of eqs 3.1 and 3.8. However, such
expressions suffer from problems to be described toward the
end of this Section and are not useful in their present form.

C. Properties of the IVR Expressions.It is worthwhile to
review some of the properties of eqs 3.1, 3.6, and 3.8 and discuss
how they overcome some of the difficulties of the MCR
expressions.

We first note that, unlike the MCR expressions, the IVR
expressions for〈x2|x1〉 are free from infinite caustic singularities.
The reason is that the canonical transformations generated by,
e.g.,F(xj,x) produce (xj,yj) that are finite, continuous functions
of (x,y), so that the derivatives appearing in the pre-exponential
factors do not cause the integrals to diverge. Additionally, unlike
the MCR formulas, calculations based on the IVR expressions
do not require searches: the variablesx1 andx2 are fixed, while
the remaining coordinates and momenta are either integration
variables or are determined uniquely from the above variables
by applying a single-valued transformation. In many cases of
interest (including those of the propagator and wave function),
this transformation can be immediately obtained by a procedure
that involves running specified classical trajectories.

If Γ ) γ1 and γ f ∞, the L- and R-type IVR expres-
sions reduce to the PSC MCR formulas, eq 2.3. On the other
hand, if γ f 0, these expressions tend to known integral
forms for 〈x2|x1〉 that appear as intermediate quantities in the
derivation of the MCR.3 Such integrals are evaluated by the
SP approximation to obtain the final PSC results summarized
in eq 2.3. Integral expressions of this kind were used compu-
tationally many years ago by Miller,6 Marcus,66,67and others68

in the original semiclassical IVR and FVR treatments of the
S-matrix. More recently, suchγ ) 0 expressions have some-
times been used in semiclassical treatments of the propa-
gator.20,22-25,31,57 It should be pointed out that although such
γ ) 0 integral forms do not diverge, they are, generally, only
PSC approximations. Like theγ f ∞ forms, they do not
always approach the exact quantum mechanical results for all
values of (x1,x2).15,16,26

The above choices forΓ violate the condition that the real
part of all of its eigenvalues be positive and finite. In contrast,
choosingΓ to obey to this condition results in a number of
advantages:
1. The formulas for the propagator [eqs 3.13, 3.15, and 3.17]
and the wave function [eq 3.20] are then USC approxima-
tions.15-17

2. It is then unnecessary to include Maslov phase factors15,22,23

in expressions for〈x2|x1〉, thus simplifying semiclassical calcula-
tions. Such factors are needed in cases whereγ ) 0 or ∞, since
the pre-exponential factor can then become zero or infinite for
certain values of its arguments, causing the phase of this factor
to change discontinuously. However, whenΓ is chosen to obey
the condition described above, an extension of the analysis
presented in refs 15 and 69 shows that the pre-exponential
factorsC of eq 3.3 are always finite and do not vanish for real
values of their arguments, making Maslov indices unnecessary.
3. Finally, for the case of the propagator, such choices forΓ
improve the numerical convergence of the integrals by causing
the integrands to decay in regions where their phase varies
rapidly.26,32This benefit should apply to the more general IVR
expressions presented here.

Unfortunately, despite these advantages, the IVR expressions
presented above are not as generally useful as are the original
MCR. We recall that much of the power of the MCR lies in
their applicability to arbitrary classical canonical variables
(x1,x2), including choices such as spherical coordinates and
action-angle variables. This feature allows the MCR to simplify
the treatment of many systems by taking full advantage of
conservation laws and leads to natural and efficient semiclassical
expressions for the amplitudes of transitions between energy
eigenstates. However, the above IVR approximations cannot
be applied with arbitrary choices of variables. The reason for
this limitation is that such choices require the〈x2|x1〉 to obey
certain characteristic boundary conditions at finite values ofx2

andx1. Typical examples are periodic boundary conditions at
0 and 2π whenxi is an angle and regular boundary conditions
at the origin whenxi is a radial distance. The IVR expressions
are, however, generally unable satisfy these conditions due to
the properties of the Gaussian factorsGΓ(xi,x,y) which are not
adapted to obeying specific forms of behavior at finitexi. Thus,
the L-type expression for〈x2|x1〉 cannot be made to satisfy
specific boundary conditions at finite values ofx2, the R-type
expression cannot obey such conditions at finitex1, and the LR-
type expression cannot be made to obey such conditions at finite
values of eitherx2 or x1. Although these expressions are able
to satisfy boundary conditions atx f (∞, this only qualifies
them for use when the variablesx appearing in the Gaussians

W(q,J) ) ∫q
pT dq (3.19)

ψJ(q) ) ( 1
2πp)N∫ dθ GΓ(q;qj,pj) B(qj,pj;θ) eiW(qj,J)/p (3.20)

B(qj,pj;θ) ) [det(∂pj
∂θ

- 2iΓ ∂qj
∂θ)]1/2

(3.21)
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are Cartesian; they cannot be used for other kinds of variables.
As a result, our present expressions lack the power and
generality of the MCR.

A closely related problem with use of the IVR expressions
in their present forms concerns the behavior of the factor
GΓ(x1;x,y) as a function ofx when this variable andx1 are
defined for only a restricted range of values. Examples of such
variables are the radial distance and the vibrational action, which
are defined only for positive values. In such cases, we cannot
rely on the SP method to make the IVR expressions accurate
for values ofx1 is near a boundary. We recall that the usual SP
method is based on the assumptions that the integrand can be
approximated by a Gaussian expression near the stationary point
x ) x1 and that the integration limits can be extended to(∞ in
both directions about such a point. However, these conditions
will not be obeyed when the integral contains only values for
x on one side of the stationary point. Thus, the accuracy of an
IVR expression near such a boundary must rely on very specific
properties of the integrand in this region. It can be anticipated
that the Gaussian form ofG will not possess these necessary
properties in all cases.

Although the boundary condition difficulties can sometimes
be sidestepped when the quantities to be calculated are not
sensitive to values ofx near the boundary points,43 these
problems cannot always be ignored. Some of the consequences
of doing so are illustrated in ref 58 where use of the Herman-
Kluk propagator for non-Cartesian variables is shown to produce
errors in the computed autocorrelation spectrum.

IV. Non-Gaussian IVR Treatment of the MCR

A. General Requirements forG. Fortunately, it is possible
to generalize our expressions to make them valid for arbitrary
choices of canonical variables, thus recovering the advantages
of the original MCR. We have mentioned that the feature
limiting the boundary behavior of the present IVR expressions
is the nature of the Gaussian factorsG in the integrals. Therefore,
to allow more general boundary behavior, it is necessary to
somehow replace theG with more appropriate functions.

One possiblity is to replace GaussiansG with particular sums
of Gaussians that enforce the desired boundary conditions. This
leads to IVR expressions that can be written as sums over
integrals, each being of the form given in eqs 3.1, 3.6, or 3.8,
containing Gaussian integrands. This approach was applied by
Reimers and Heller70 to adapt the FGA to periodic boundary
conditions. More recently, similar approaches were used by Sun
and Miller,43 Maitra,51 and McCormack52 to adapt IVR propaga-
tor expressions to such boundary conditions. Here, we describe
a more general strategy that includes the Gaussian sum method
as a special case.

In our approach, we recognize that the Gaussian factors in
our IVR expressions can be replaced by a wide variety of other
forms, including those that allow the resulting〈x2|x1〉 to obey
desired boundary conditions. This is possible because in order
for an IVR expression to be a semiclassical approximation, it
needs only to reduce to the PSC result when the integral is
approximated by the SP method to the lowest order inp. But
this is a rather weak condition. For it to be satisfied, it is
sufficient that the factorsG satisfy15,17,71

where

In terms of this expression, the matrixΓ appearing in the pre-
exponential factors should be defined by

Note that theG defined in this way no longer needs to be
Gaussian.

In addition to the factorsG, the expressions for the pre-
exponential factorsA, B, andC appearing in the IVR formulas
may be generalized by adding terms to them that only contribute
higher powers ofp to the integrals. Even further generalizations
of the IVR forms are possible15 but need not be considered here.

For the cases of the wave function and the propagator, it is
possible to show that the IVR expressions remain USC
approximations, even under the relaxed conditions described
above.15,17Thus, the factorsG may be replaced by more general
non-Gaussian formssincluding those appropriate for desired
boundary conditionsswithout losing the basic advantages of
the IVR treatments.

B. G from Classical Exact IVR Expressions.The appropri-
ate functional expressions for the factorsG are, however, not
always obvious. One approach to determining these expressions
is based on the observation that, with the Gaussian restriction
removed, the new IVR form for the wave function [eq 3.20 as
modified by eq 4.1] is so general that it allows one to express
exact quantum mechanical wave functions for a variety of
systems in this ostensibly “semiclassical” form.71,72 Such
reference systems include some that are described in terms of
non-Cartesian variables so that the wave functions obey the
appropriate corresponding boundary conditions. The functions
G appearing in these classical exact (CE) expressions can be
used to form IVR expressions for other target systems obeying
similar boundary conditions. Note that such choices forG(x1,x,y)
contain not only the correct dependence onx1 to satisfy the
desired boundary conditions but, less trivially, the correct
dependence onx to yield accurate IVR results, at least for the
treatment of wave functions for target systems resembling the
reference systems.

Examples of reference systems for which CE expressions have
been obtained include:71-73

1. Harmonic Oscillator, Linear Potential, and Free Particle
in Cartesian Coordinates.For such systems, the IVR wave
function, eq 3.20, with the Gaussian form forG, eq 3.2, becomes
identical to the FGA wave function of Heller.65 It is further-
more known that the FGA wave function can be made identical
to the exact quantum wave function, for the special systems
listed above, by choosingΓ to have certain values.65 Of course,
such wave functions obey specific boundary conditions at(∞,
as is appropriate for the Cartesian coordinate representation.
Thus, this example simply confirms that Gaussian functions
are appropriate choices for the factorsG in IVR treatments
of target systems that are described in terms of Cartesian
variables.

2. Free Two-Dimensional Rotational Motion.For rotational
motion in two dimensions, the IVR wave function, eq 3.20, can
be expressed as

whereN is a normalization constant,φ is the rotational angle
coordinate,pφ is the momentum conjugate toφ, L is the
quantized action variable for the state of interest, andθ is the

Γi,j ) 1
2i ( ∂

2Φ
∂x′i∂x′j)x′)x

(4.3)

ψL(φ′) ) N ∫0

2π
dθ Gγ(φ′;φ,pφ) ×

(∂pφ/∂θ - 2iγ∂φ/∂θ)1/2eiW/p (4.4)lim
pf0

GΓ(x′;x,y) ) eiΦ(x′;x,y)/p (4.1)

Φ(x′;x,y) ≈ yTS(x′ - x) + O(|x′ - x|2) (4.2)
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angle variable conjugate toL. For the special case of free
rotational motion,φ ) θ, pφ ) L ) lp, with l ) 0, 1, ..., and
W ) Lθ, so that the IVR wave function becomes

where N′ is another constant. By changing the integration
variable, it is clear thatψ of eq 4.5 will be equal to the exact
quantum wave function∝ exp(ilφ′) for any choice ofG(φ′;φ,pφ)
that is a 2π-periodic function ofφ′ - φ. One example of such
a functionG, that is compatible with conditions of eqs 4.1 and
4.2, is

which is similar to the choice applied in refs 43, 51, 52, and
70. Another possibiity, that we will examine numerically in
section V, is

Clearly, there is an infinite variety of other choices forG that
also yield the exact quantum wave function in this case. This
situation illustrates that, quite generally, CE expressions for
wave functions are not unique.

It is important to note that since theseG functions obey the
conditions of eqs 4.1 and 4.2, despite their non-Gaussian forms,
a SP treatment of the integral in eq 4.4 still yields the correct
PSC result. Furthermore, since these choices forG satisfy
periodic boundary conditions atφ′ ) 0 and 2π, they can be
used to form IVR expressions for wave functions (or other
quantities〈φ′|x〉) for more general systems that obey similar
boundary conditions.

3. Radial WaVe Functions for the Isotropic Three-Dimen-
sional Harmonic Oscilator, the Coulombic System, and the Free
Particle. For the above systems, it can be shown71,72 that the
radial wave functionsRl(r′), associated with angular momentum
quantum numberl, can be expressed exactly in IVR form [eq
3.20] if the factorG is taken as

and the parameterγ is chosen appropriately. We observe that
this form guarantees thatRl(r′) obeys regular boundary condi-
tions at r′ ) 0. We also note that this form satisfies the
conditions of eqs 4.1 and 4.2. Thus, our IVR expressions with
this form ofG can be used to obtain semiclassical approxima-
tions for radial wave functions of other systems and for other
quantities〈r′|x〉, when state|x〉 is characterized by a definite
value for the angular momentum.

4. Free Orbital Motion.The wave functions for free orbital
motion corresponding to azimuthal quantum numberm ) 0 are
the Legendre polynomials,Pl(cos θ). These functions can be
expressed exactly in IVR form, using eq 3.20, if the factorG
in eq 3.20 is chosen as71

whereø is the orbital angle,L ) λp is the angular momentum
conjugate toø, c ) 2γ/p, andJ0 is the Bessel function of the
first kind.

In order for this form ofG to give the exact wave function
for free orbital motion, the parameterγ must be chosen asL/2.
However, even with more general values ofγ, this form still
obeys the conditions of eqs 4.1 and 4.2, as can be proven by
examining the asymptotic approximation for the Bessel function
with large argument,74 consistent withp f 0. Thus, since this
choice forG enforces the boundary conditions associated with
orbital motion atθ ) 0 and π, it can be used to form IVR
expressions for more general quantities〈θ|x〉 that obey similar
boundary conditions

It should be mentioned that the boundary conditions for orbital
motion generally depend on the value of the azimuthal quantum
numberm. The expression forG presented here is valid only
for m ) 0. A somewhat more complicated expression forG is
available for the more general case.71

C. G for Action Variables. In the above examples, the
variablex2 in 〈x2|x1〉 was a particular kind of coordinate. To
find forms for G that are appropriate for L- and LR-type IVR
expressions whenx2 is an action variableJ, we use a some-
what different approach which we outline below for the one-
dimensional case〈J|x〉.

We first, express the quantity of interest,〈J|x〉, in the
form

where q is a coordinate variable andψJ(q) ) 〈q|J〉 is the
time-independent wave function for state|J〉. Substituting
the L- or LR-IVR forms for 〈q|x〉 into eq 4.11, we find that
we can express〈J|x〉 in terms of an integral containing the
quantity

On the basis of the IVR form of〈J|x〉, we expect the evaluation
of D to yield a factorG′(J;Jh,θh) obeying the conditions of eqs
4.1 and 4.2, whereJh and θh are action and angle variables
corresponding to (qj,pj). It is this factor that we wish to determine.
For the general case, we could proceed by evaluating the integral
in eq 4.12 by the SP method using a WKB expression forψ,
but this technique is not powerful enough to describe the precise
form of G′ for general values ofJ andJh. Instead, to learn how
G′ should look in order that it incorporate the boundary
conditions for variablesJ and Jh, we consider model cases
where the IVR expression forψJ(q) is exact, the corresponding
Gγ(q;qj,pj) is known, and the integral overq in eq 4.12 can be
performed analytically.

As an example of such a model treatment, we consider
the case of the one-dimensional harmonic oscillator in state
n so that ψJ(q) [with J ) (n + 1/2)p] is known analyti-
cally. Furthermore, as mentioned above, the IVR expression
for ψJ(q) [eq 3.20] is exact in this case ifGγ(q;qj,pj) is chosen
to be a Gaussian [eq 3.2] with a certain value forγ. This
value turns out to beµω/2,65 whereµ andω are, respectively,
the oscillator mass and frequency. Since eq 3.20 forψJ(q)
is an L-type IVR formula for〈q|J〉, (i.e., it is equivalent to
an R-type expression for〈J|q〉) it does not, by itself, contain
the desired factorG′(J;Jh,θh). Nevertheless, such a factor can

〈J|x〉 ) ∫〈J|q〉〈q|x〉 dq (4.10)

) ∫ψJ(q)* 〈q|x〉 dq (4.11)

Dγ(J;qj,pj) ) ∫ dqψJ(q)*Gγ(q;qj,pj) (4.12)

ψL(φ′) ) N′∫0

2π
dφ Gγ(φ′;φ,pφ) eilφ (4.5)

Gγ(φ′;φ,pφ) ) ∑
k)-∞

∞

e-γ(φ′-φ-2πk)2/p eipφ(φ′-φ-2πk)/p (4.6)

Gγ(φ′;φ,pφ) ) eγ[cos(φ′-φ)-1]/p+ipφsin(φ′-φ)/p (4.7)

Gγ(r′;r,pr) ) (r′/r)l e-(γ/p)(r′-r)2-(l+1/2)(r′/r-1) eipr(r′-r)/p (4.8)

Gγ(θ;ø,L) ) x-2πi sin θ ×
(λ cosø - ic sin ø)1/2e-c+cosθ(ccosø-iλsinø) ×

J0[sin θ(λ cosø - ic sin ø)] (4.9)
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be deduced by evaluating the integral forDγ analytically to
obtain75

where

and the functionG′1 is given by

for the special caseR ) 1. WhenJ is large, eq 4.16 can be
somewhat simplified using Stirling’s approximation to obtain

Equation 4.13 is just the form forD needed to convert eq 4.11
to the expected IVR form. The factor exp(-iF2/p) combines
with the factor containing the generating function in〈q|x〉
to form the exponential factor exp(iF/p) for 〈J|x〉, while d
combines with the pre-exponential factor in〈q|x〉 to yield
the appropriate pre-exponential factor for〈J|x〉. The function
G′1 is the Gaussian-replacement factor we have sought. Indeed,
whenp f 0 (so thatJ/p is large) and|J - Jh| small, a Taylor
expansion of the exponent in eq 4.17 shows thatG′R becomes a
GaussianGR/4J(J;Jh,θh) as defined by eq 3.2, consistent with the
requirements of eqs 4.1 and 4.2.

Thus,G′R (with R not necessarily equal to 1) can serve as the
appropriate factorG for a semiclassical L- or LR-type IVR
treatment of〈J|x〉, whereJ is a vibrational action. Although
derived for the harmonic oscillator, numerical results confirm
that this form can be used semiclassically to describe vibrational
states of more general anharmonic oscillators as well.76 In
contrast, the use of Gaussian expressions forG′(J;Jh,θh) in L-
and LR-type IVR treatments of〈J|x〉 is found to yield results
of much lower accuracy for small values ofJ, even for harmonic
systems.75,76

Since the vibrational actionsJ and Jh are defined only for
nonnegative values, it is of interest to examine the limiting
boundary behavior ofG′ when these variables become zero.
From eq 4.16, we see thatG′ has a finite value atJ ) 0 (G′
would be 0 atJ ) -p/2 corresponding ton ) -1). Perhaps
more significantly, eqs 4.16 and 4.17 show thatG′ approaches
zero as a positive power ofJh in the limit Jh f 0 (except when
J ) 0). Gaussian expressions forG′ cannot produce this behavior
that is apparently required for the accurate description of
vibrational states with low values ofJ.

Methods similar to the one illustrated here can be used to
find factorsG′ that are appropriate for actions associated with
other kinds of motion. For example, such a factor for rotational
actions can be derived by treating the case where〈q|x〉 is the
spherical harmonic, in which case a CE expression is again
known71 andD can again be evaluated analytically.

V. Examples

In this Section we present some examples that illustrate how
IVR methods can be applied, with non-Gaussian factorsG, to

obtain semiclassical approximations for quantities〈x2|x1〉 in
cases where thexi are not Cartesian variables.

A. Hindered Rotor. We begin with a simple numerical
example in which we use an IVR treatment to calculate wave
functions obeying periodic boundary conditions associated with
nonfree two-dimensional rotational motion.

We wish to obtain semiclassical eigenfunctions of the
hindered rotor Hamiltonian

for parameter valuesµ ) p ) 1, andV0 ) 10.0. Our treatment
is based on eq 4.4 for the wave functionψL(φ′) with eq 4.7 for
the factorGγ(φ′;φ,pφ).

The quantitiesφ(θ,L), pφ(θ,L), W(θ,L), etc., appearing in
eq 4.4 for the state with quantum numberl, must be calculated
at the semiclassical energyEl for that state, as determined by
the WKB quantization condition. For levels above the potential
barrier, this condition yields two degenerate levels, and the IVR
treatment produces two corresponding wave functions. For
comparison with the quantum results, we form linear combina-
tions of such semiclassical wave functions to create functions
having definite inversion symmetry aboutπ.

The IVR wave functions obtained were found to be not very
sensitive to the value of parameterγ. The valueγ ) 6.6,
consistent with the conditionγ ) µω/2 for harmonic-like low
energy states, was used for all levels in our calculation. Some
resulting semiclassical wave functions are shown in Figure 1,
where they are compared with accurate quantum results. It is

Dγ(J;qj,pj) ) d(Jh,θh) e-iF2(qj,Jh)/pG′1(J;Jh,θh) (4.13)

F2(qj,Jh) ) ∫qj
pj(Jh) dqj (4.14)

d(Jh,θh) ) ( p eiθh

x2Jhµω)1/2

(4.15)

G′R(J;Jh,θh) ) (x2π/p

pnn! )R/2

eR(JlnJh-Jh)/(2p)+iθh(Jh-J)/p (4.16)

G′R(J;Jh,θh) ) eR(JlnJh/J-Jh+J)/(2p) eiθh(Jh-J)/p (4.17)

Figure 1. Semiclassical IVR wave functions (heavy curves) and
quantum wave functions (light curves) for three states of the hindered
rotor. The bottom panel shows the potential energy curveV(φ) ) V0

cos φ for the system with the energy levels for the states treated
indicated by heavy horizontal lines.

Ĥ ) - p2

2µ
d2

dφ′2
+ V0 cosφ′ (5.1)
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apparent that the semiclassical wave functions obey the correct
periodic boundary conditions at angles 0 and 2π and are in very
good agreement with the quantum wave functions for all values
of the angle. Although the figure shows results for only three
states, the degree of semiclassical/quantum agreement was found
to be no worse for other states examined.

B. S-Matrix for Collinear Scattering. We now apply the
IVR form of the correspondence relations to derive a useful
semiclassical expression for theS-matrix describing transitions
between vibrational statesn1 andn2 in a collinear collision at
energyE.

Our treatment begins with the well-known PSC expression
for the S-matrix derived by Miller1-4,6,77,78and Marcus66,67

where theni’s are defined asJhi/p - 1/2, in terms of the initial
(i ) 1) and final (i ) 2) vibrational actionsJhi. Theni are thus
momentum-type classical variables corresponding to vibrational
quantum numbers. The coordinate variables conjugate to theni

are denoted here byqi ) p(θi - ωµRi/Pi), whereθi’s are the
initial or final vibrational angle variables,µ is the reduced mass
for the collision, ω’s are the vibrational frequencies of the
fragments, and (Ri,Pi)’s are the initial or final translational
distance and momentum. In the work of Miller and Marcus,
the coordinatesqi are denoted by symbols with overbars, but
we do not adopt this notation here to avoid confusion with our
variables (xj,yj). Finally, the quantity

appearing in eq 5.2 is the generating function for the transfor-
mation between (n1,q1) and (n2,q2) for the N - 1 vibrational
degrees of freedom.

Referring to eq 2.3, we see that we can express eq 5.2 as

in MCR notation. This immediately allows us to use eq 3.6 to
express theS-matrix as an L-type IVR formula. We need only
substitute:x1 ) n1, y1 ) q1, x2 ) n2, y2 ) q2, andxj ) n(n1,q1),
yj ) q(n1,q1), wheren andq are the final values of the classical
quantum number and coordinate variables obtained from initial
values (n1,q1). Of course, these final values need not be equal
to (n2,q2). In addition, we use a multidimensional generalization
of G′R(J;Jh,θh) [eq 4.17] in place of the functionG since our
variablesn are related to vibrational actions. The final result is

where

with

and theRk are parameters.
The above derivation is simple and direct. An alternate

approach derives eq 5.5 from an asymptotic analysis of the IVR
expression for the wave function, eq 3.20.75 This requires much
more effort but provides several important insights. For example,
since eq 3.20 is a USC expression and the derivation of eq 5.5
with 0 < RRk < ∞ does not involve steps that degrade its
uniform quality, it is possible to conclude that eq 5.5 is itself a
USC approximation, provided that theRk are chosen to obey
these conditions.

Further aspects of our IVR expression forS are discussed
elsewhere,75 where numerical results are also reported for the
Secrest-Johnson79 collisional model. Here we only summarize
some of the major characteristics of eq 5.5.
1. This expression reduces to the PSC formula for theS-
matrix, eq 5.2, asRk f ∞ and becomes identical to the original
Miller-Marcus IVR expression6,66,67for theS-matrix asRk f 0,
for all k.
2. The numerical studies confirm expectations [based on the
uniform properties of eq 5.5] that choices forRk obeying 0<
RRk < ∞ give results that are generally much more accurate
than either eq 5.2 or the Miller-Marcus IVR treatment.
3. The non-Gaussian form ofG′ given in eq 5.6 is found to be
essential for achieving such accuracy for low values ofn2.

Since our IVR expression involves only anN-1-fold inte-
gration, it yields theS-matrix at a particular energy using
far fewer trajectories than would be needed for a treatment
directly based on the semiclassical IVR propagator.36,40 In
the latter case, the dimensionality of the integrations is 2N36 or
2N - 1,40,53,54 depending on the formulation. The difference
betweenN - 1 and, say, 2N - 1 is extremely important in
practice since the computational labor in typical IVR calcu-
lations increases exponentially with the dimensionality of the
integrations.30

It is clear that, in additional to the L-type expression obtained
above, it is possible to derive R-type LR-type expressions for
theS-matrix, in analogy with the FVR67,68 and double-integral
IVR treatments66,77of classicalS-matrix theory. The usefulness
of such treatments remains to be fully investigated.

C. Differential Cross Section for Elastic Scattering.As a
final example, we use our form of the correspondence relations
to derive an IVR expression for the differential cross section of
elastic atom-atom scattering. We begin by recalling some basic
quantum mechanical results that we will need. The differential
cross section for scattering from a spherically symmetric
potential is given by

The scattering amplitudef can be expressed in terms of the
partial wave sum

whereηl are phase shifts for the scattering of thel-th partial
wave andk ) x(2mE/p2), whereE is the energy of the system
andm is the reduced mass for the collision partners.

Sn2,n1
(E) ) i ∑[∂2Φ(n2,n1)/∂n2∂n1

(-2πip)N-1 ]1/2

exp[iΦ(n2,n1)

p ] (5.2)

Φ(n2,n1) ) ∫-∞

∞
dt [-R(t)Ṗ(t) - pθ(t)Tn3 (t)] (5.3)

Sn2,n1
(E) ) i 〈n2|n1〉 (5.4)

Sn2,n1
(E) )

i ( 1
2πp)N-1∫ dq1 G′R(n2;n,q) B(n,q;q1) eiΦ(n,n1)/p (5.5)

G′R(n2;n,q) )

exp{∑
k)1

N-1 Rk

2 [(n2k + 1/2) ln( nk + 1/2

n2k + 1/2) - nk + n2k]} ×

exp[iqT(n - n2)/p] (5.6)

B(n,q;q1) ) [det(bij)]
1/2 (5.7)

bij )
∂qi

∂q1j
+ i( pRi

2ni + 1) ∂ni

∂q1j
(5.8)

dσ/dΩ ) | f(θ)|2 (5.9)

f(θ) )
1

2ik
∑
l)0

∞

(2l + 1)[e2iηl - 1]Pl(cosθ) (5.10)
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The scattering amplitude can be approximated semiclassically
by the well-known PSC formula12,80,81

where the sum is taken over impact parametersb for particles
that are initially moving parallel to thez-axis atz ) -∞ and
that are scattered into angleθ (measured from the positive
z-axis) from the target located at the origin.ø is the deflection
function describing the signed asymptotic angle between the
outgoing particle and the positivez-axis asz f ∞. Thus, the
observed scattering angle,θ, is an unsigned version ofø
restricted to the range [0,π]. L ) bpk is the angular momentum
of the particle, andη(L) is the semiclassical phase shift, given
by

where V(R) is the potential energy function andR- is the
distance of closest approach of the particle to the target. The
choice of sign in the( phase term of eq 5.11 depends on the
branch of the deflection function.12,80,81

To derive an IVR expression forf, we temporarily consider
a more general scattering scenario in which the particles in the
incoming beam do not necessarily move parallel toz-axis but
are incident at an asymtotic angleφ, as measured from the
negatiVe z-axis. We will eventually setφ to zero. Then the
quantity

appearing in the exponent of eq 5.11 can be identified as aF1-
type generating function for the canonical tranformation between
the asymptotic variables (φ,L) and (ø,L), where the angular
momentumL is conserved. Indeed, using the known relation
2p∂η/∂L ) ø,12,80,81 and recalling thatφ and ø are measured
from different directions along thez-axis, it is easy to show
that

consistent with eq 2.2. This observation allows us to express
the derivative the|∂L/∂ø| appearing in eq 5.11 as|∂2F/∂φ∂ø|.
Comparison with eq 2.3 thus shows that the PSC formula forf,
eq 5.11, can be written as

in terms of MCR notation, where we have added primes to the
final scattering variables for future convenience.

We are now in a position to derive an R-type IVR expression
for the scattering amplitude. We simply apply eq 3.8 for the
inner product〈x2|x1〉 with the substitutions of (ø′,L′) for (x1,y1),
(φ,L) for (x2,y2), and (ø(L),L) for (x,y). In this treatment, the
quantityø(L) is the deflection function for particles with angular
momentumL and needs not coincide withø′, the deflection

function for particles with angular momentumL′. The IVR
expression obtained in this way is

which we henceforth apply for the caseφ ) 0. Using eq 3.9,
we immediately find the pre-exponential factorA to be

Sincef(θ′) must obey boundary conditions for orbital motion,
the appropriate choice for the functionG in eq 5.16 is the form
given in eq 4.9. Substituting that expression gives

whereλ ) L/p and c ) 2γ*/p. In presenting this result, we
have brought the factorL′1/2 in eq 5.16 within the integral as
L1/2. This is valid since a SP treatment of the integral will
produce the entire pre-exponential factor at the stationary phase
point, whereL ) L′.

To allow a comparison with the quantum expression forf,
we examine eq 5.18 in the special casec ) λ, where we can
simplify our expression using74

When this identity is substituted into eq 5.18 and the resulting
integral is evaluated term by term in the SP approximation, we
obtain

where, in this expression,ηl ) η[L ) (l + 1/2)p]. The form
of this result differs from that of the exact partial wave
expression, eq 5.10, in two ways: the first factor in each term
here is (2l + 2) instead (2l + 1), and the second factor in each
term here ise2iηl instead ofe2iηl - 1.

The first difference becomes negligible in the classical limit
where many partial waves contribute tof. Still, this discrepancy
can be removed by replacing the factorλ1/2 in the integrand of
eq 5.18 withλ1/2 - 1/(2λ1/2). This step is justified since it only
adds a term to the pre-exponential factor that is of higher order
in p than is the factor itself. As explained in the paragraph
following eq 4.3, such modifications of IVR expressions are
permissible.

Concerning the second difference, it is known that the
additional term in the quantum expression for the scattering
amplitude is singular and affects only the value off(θ′) at θ′ )
0.12,80,81 Its role is to remove fromf an infinite contribution
arising from the flux in the forward direction due to the free
motion of particles with large impact parameters. This correction
can be incorporated in our IVR treatment simply by subtracting
from eq 5.18 the expression that would be obtained by applying
eq 5.18 for free particle motion (in which caseø ) 0, η ) 0).

f(θ) ) -i∑( L

p2k2 sin θ
|∂L

∂ø|)1/2

ei[2pη(L)-Lø]/p(iπ/4 (5.11)

η(L) )

lim
Rf∞{∫R-

R 1
p[2mE- 2mV(R) - p2L2

R2 ]1/2

dR - kR+ Lπ
2p}

(5.12)

F(φ,ø) ) 2pη(L) - Lø (5.13)

∂F(φ,ø)/∂φ ) L ∂F(φ,ø)/∂ø ) -L (5.14)

f(θ′) ) 1
ik(-2πiL′

p sin θ′)
1/2

〈φ|ø′〉 (5.15)

f(θ′) ) 1
2πpik(-2πiL′

p sin θ′)
1/2 ×

∫0

∞
dL A(L;ø,L) ei[2pη(L)-Lø(L)]/p Gγ

/(θ′;ø,L) (5.16)

A(L;ø,L) ) (1 + 2iγ∂ø/∂L)1/2 (5.17)

f(θ′) ) 1
ik ∫0

∞
dλ λ1/2(1 + ic∂ø/∂λ)1/2ei(2η-λø) ×

(λ cosø + ic sin ø)1/2 e-c ecosθ′(ccosø+iλsinø) ×
J0[sin θ′(λ cosø + ic sin ø)] (5.18)

ezcosθ′ J0(z sin θ′) ) ∑
l)0

∞ zl

l!
Pl(cosθ′) (5.19)

f(θ′) )
1

2ik
∑
l)0

∞

(2l + 2) e2iηlPl(cosθ′) (5.20)
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With these modifications our final result for the scattering
amplitude becomes

This expression can also be derived, albeit with more effort,
from an asymptotic analysis of the IVR expression for the
scattering wave function, eq 3.20. Since this wave function
expression is a USC approximation and no steps are introduced
in the derivation of eq 5.21 that degrade this property, eq 5.21
is itself a uniform approximation. It thus yields accurate
semiclassical results for all values ofθ′, including those for
which the PSC expression, eq 5.11, diverges. These values
include the rainbow angle,θ′r, where dø′/dL ) 0, the forward
direction,θ′ ) 0, and the backward direction,θ′ ) π.

Our IVR result is somewhat reminiscent of certain semiclas-
sical expressions forf(θ′) that are obtained by replacing the
partial wave sum with an integral and substituting various
asymptotic approximations for the Legendre polynomials (some
of which involve the Bessel functionJ0).12,80,81However, unlike
the present result, these non-IVR approximations break down
either atθ′ ) 0 or π or at both angles. Other semiclassical
expressions forf that are uniform in various restricted regions
are known.80-82 A uniform expression that is valid both for glory
(θ′ ) 0, π) and rainbow scattering was derived by Miller.83

To test the accuracy our result, we apply it to scattering from
the Lennard-Jones potential

We set the parameters in our calculation toE/ε ) 1.6 and
(2mE)1/2R0/p ) 60 so that the numerical results can be readily
compared with those of other semiclassical treatments.12 The
scattering amplitudes are not strongly dependent on the value
of γ or c used in the IVR calculation. The results shown here
are obtained usingc ) 0.2λ.

Figure 2 compares the semiclassical differential cross section,
calculated from eq 5.21, with that obtained from the partial wave
expansion, eq 5.10, using semiclassical phase shifts. These
results, in turn, may be compared with those reported in ref 12
for additional treatments of this system. We see that the IVR

method yields good agreement with the partial wave results for
all values ofθ, including those in the rainbow scattering region
(θr ) 1.5 rad in the present case) and the small-angle region,
where the PSC results become highly innacurate. However, the
quality of the IVR cross section forθ > θr, which contains an
oscillatory contribution from classically forbidden scattering,
deteriorates whenθ - θr becomes too large. This is an example
of a known difficulty37 that limits the accuracy of the IVR
treatment for strongly forbidden classical processes.

It is important to note that, for the case treated, our expression
for f(θ′) requires only about 75 trajectories [each corresponding
to a value ofL, ø(L), andη(L)] to achieve convergence for all
anglesθ′. This is about1/4 the number of trajectories needed
by the partial wave sum or its integral approximants to achieve
convergence. Indeed, these other approximations, when applied
with only 75 trajectories, are unable to reproduce the converged
results even qualitatively. Furthermore, our treatment requires
fewer trajectories than would be needed by the PSC or the more
conventional USC treatments12,80,83to produce the approximately
50 oscillations appearing in Figure 2. Thus, the present IVR
treatment makes efficient use of trajectories to describe the
semiclassical differential cross section.

The significance of these results is that they show that
calculations of cross sections can be performed accurately by
IVR methods that directly parallel the classical approach and
avoid partial wave summations. It should be possible to
generalize the work described here to develop similar IVR
treatments of molecular inelastic and reactive scattering cross
sections.

VI. Summary and Discussion

We have investigated the possibility of re-expressing the
Miller correspondence rules in IVR form as a means of
alleviating a number of difficulties that arise in their application.
Although it is rather obvious how to do so in terms of integrals
containing Gaussian factors, such expressions do not capture
the power and generality of the original MCR since they are
only appropriate for Cartesian variables. The key to a more
useful generalization of the MCR is to replace the Gaussian
factors with functions obeying the specific boundary conditions
needed to treat non-Cartesian variables. We have suggested that
such non-Gaussian functions can be chosen as factors appearing
in IVR expressions for the exact wave functions of certain
reference systems. We have presented examples of such factors
and have illustrated the theory with a few applications.

These applications demonstrate that the IVR formulation of
the MCR is capable of producing semiclassical results that obey
the correct boundary conditions, are free of caustic singularities,
and are uniformly accurate for the full range of variables. From
the computational standpoint, IVR treatments are convenient
since they do not require numerical searches and, when properly
formulated, do not require calculation of Maslov indices.

The IVR expressions presented here for theS-matrix and the
elastic cross section illustrate the value of formulating IVR
treatments so that they directly produce the final quantities of
interest and make use of the specific sets of variables that
simplify the physical problems. This can lead to great savings
in computational labor over the extraction of such quantities
from IVR treatments of the propagator or the wave function in
the Cartesian coordinate representation. For example, a brute-
force calculation of the elastic scattering cross section based
on the Herman-Kluk IVR propagator would involve a full
three-dimensional treatment of the collision and would require
the numerical evaluation of a six-dimensional integral. This

Figure 2. Differential cross section for elastic scattering. The heavy
curve is obtained from the IVR approximation, while the light curve is
obtained from the partial wave expansion. The inset shows the cross
section for small values of the angle.

f(θ′) ) 1
ik ∫0

∞
dλ(λ - 1/2) e-c{(1 + ic∂ø/∂λ)1/2(λ cosø +

ic sin ø)1/2 λ-1/2 ei(2η-λø) ecosθ′(ccosø+iλsinø) J0[(λ cosø +

ic sin ø) sin θ′] - eccosθ′ J0(λ sin θ′)} (5.21)

V(R) ) 4ε[(R0/R)12 - (R0/R)6] (5.22)
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would necessitate several orders of magnitude more computa-
tional effort than the evaluation of the single integral of eq 5.21.
Although such a propagator-based calculation would have the
advantage of producing the cross section for a range of energies
rather than at a single energy, this would come at a price far
too high to make such a treatment worthwhile in any realistic
case. The focus of our work here has been to address difficulties
concerning boundary conditions, to allow the development of
such efficient IVR treatments that are taylored specifically to
the quantities and systems of interest.

It should be clear that, beyond the few examples presented
here, many other applications of the present formalism are
possible. Indeed, some further simple examples of this approach
have been presented elsewhere.71 However, in addition to these,
several more potential applications readily come to mind. The
most intriguing of such ideas involve the further exploitation
of expressions such as eq 4.17 that ultimately allow matrix
elements between energy eigenstates to be expressed directly
in IVR form. This should make it possible to develop novel
semiclassical treatments of spectroscopic, photochemical, and
collisional transition amplitudes that may be more efficient than
those currently in use. Several of these applications are being
actively investigated.76

However, to develop many further applications, it will be
necessary to derive expressions for additional factorsG that
are appropriate for the treatment of a wider variety of boundary
conditions. It is clear that the quantities〈x2|x1〉 that are of interest
for polyatomic systems satisfy many different forms of boundary
conditions, depending on the cases treated and identity of the
variablesxi. The set ofG presented in this paper does not suffice
to cover all situations of practical importance. As a particular
example, expressions analogous to eq 5.5, describing the matrix
elementsSj′l′,jl

J (E) for rotational scattering from an anisotropic
potential, would require an as-yet unknown form ofG that is
consistent with the boundary conditions forl′ andj′ arising from
conservation of the total angular momentumJ. More work is
needed to derive such expressions and the development of CE
treatments for additional reference systems would be a useful
step in this direction.
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