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The correspondence rules of Miller, determining semiclassical approximations for general quantum amplitudes
X,|x,0) are formulated in a way that is analogous to the initial value representation (IVR) treatments of the
propagator. The semiclassical formulas obtained in this way do not require numerical searches, are free from
caustic singularities, and are often uniform approximations. However, to develop treatments that retain the
power and generality of Miller’s rules, it is necessary to overcome boundary condition difficulties that arise
when thex’s are not Cartesian coordinates. Such problems can be solved by replacing Gaussian factors,
analogous to those appearing in existing IVR treatments of the propagator, with more general non-Gaussian
functions. It is suggested that factors of this kind can be obtained from certain IVR representations for wave
functions that are exact for particular model systems. Examples of such factors are presented, and the resulting
theory is illustrated. In one application, an IVR expression for the elastic scattering differential cross section
that is uniform for all angles is developed and tested.

I. Introduction general use. In section IV, we suggest some modifications to
S S . our treatment that overcome these problems, and in section V,
W. H. Miller is widely and justifiably recognized as one of P

. . . we present some examples of the new treatment including
the key Igaders in the development of modern Sem'CIaSS'Ca(Ijnumerical results. Finally, in section VI, we summarize and
theory. It is safe to say that almost everyone who has engage hiscuss our work
in the application of semiclassics to molecular dynamical '
processes over Fhe past thirty-plus_years hqs be_en stronglyi; The Miller Correspondence Relations
influence by his pioneering work. Of his many highly important _ ] ) _
contributions to this field, however, perhaps his most funda- _ Miller's semiclassical formulas for the quantum amplitudes
mental and elegant work is his formulation of the general BzlXi[lre expressed interms of the classical generating function
classical/quantum correspondence relations. First developed a$ (X2x1) for the canonical transformation from variables,y1)
tools for the derivation of classic&matrix expressions?these 0 variables X»,y»). In the notation used here; andx; are
relations were subsequently elaborated and presented in a mor&-dimensional vectors containing elememisand Xz, where
general context in his classisdvances in Chemical Physics N is the number of degrees of freedom for the system treated
articles34 In these latter works, Miller demonstrated that most @nd X is a classical canonical variable for theh degree of
objects of quantum mechanical importance can be expressedréedom. Each such variable may, independently, be either a
as inner products (or quantum amplitudes) of the faxax,[) coordinate- or momentum-type variable. Similayy,andy;
where theix[s are states corresponding to classical position or areN-dimensional vectors containing elemegtsandysi that
momentum variables. Miller showed that semiclassical ap- aré conjugate tou; andxz; i.e., if xq is a coordinate, the;
proximations to these quantum amplitudes can be expressedVill be a momentum, and vice versa. If all elementscirare
compactly and generally in terms of the classical generating Of the same gender (coordinate or momentum) and all elements
functions for canonical transformations between the variables Of X2 are also .O.f a part|cu'lar gender, the generating fUF}CﬂOﬂS
x1 and x,. The resulting expressions, which we refer to as ¢an be classified as being of typés, Fz, Fs, or Fs in
the Miller correspondence relations (MCRs), provide short Goldstein’$ notation. The transformatiéfrom (x1,y1) to (z.y2)
cuts to the derivation of semiclassical formulas for wave C€an be obtained from the generating functierby applying

functions, propagators$ -matrix elements, FranekCondon the relations

factors, Clebsch-Gordan coefficients, and many additional

quantities. (X)) _ 2.1)
The purpose of the present work is to re-express the MCR in X, 2 '

a form that makes them more useful for numerical applications.

We thus begin, in section II, with a short review of the MCR IF(XzX1) = sy, 2.2)

and a discussion of certain known problems that arise in their 0X,
application. In section Ill, we present an alternative formulation

of the correspondence relations that alleviates some of theseand solving for X,y2) in terms of &i,y1). Here we have de-
difficulties but that still has disadvantages that obstruct its fined S; andS; to beN x N diagonal matrixes with elements
(Spij = (su)dj and &) = (sz)dj, wheresq = +1 if x4 is a

T Part of the special issue “William H. Miller Festschrift”. coordinate and-1 if x is a momentum.
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In terms of this notation, Miller's correspondence relatiofis where theG is the N-dimensional Gaussian coherent state
for the quantum amplitudes;|x;[Ican be expressed compactly function of the form
as
GF(Xl.X y) _ ef(xrx)Tl“(xrx)/h einS(xrx)/h (32)

—1\N 9°F ) . _ _ . .
iF (xax)/h with §; = s ands = +1, according to whethex; is a
Bolxy = Z\/(anh) de{szang)(l Sll © (2:3) coordinate or momentum, respectively. In this expresdiois,

a complex symmetric matrix; it may be chosen arbitrarily,
provided that the real part of each eigenvalue is positive and
finite. The pre-exponential factdt is given by

The sum appearing in eq 2.3 arises becdtss generally a
multivalued function of X»,x;) and all values of consistent
with (x2,X1) contribute tolXz|x;[] 1 \N2
Despite the great theoretical and practical importance of the Cxyxy) = (ﬁ) X
MCR, a few important difficulties surface when applications
are attempted. One problem is related to the nature of the second de(— Ns 1 oigr. Rgy o1V 1 43r %r*)r’z (3.3)
derivatives appearing in eq 2.3. It is known that these quantities X 2 9x ay ! 2oy !
can become infinite for certain valuesxfor x», referred to as _ B B ) .
caustics, so that the semiclassical approximation of eq 2.3 breakdVhereé S; = §d; ands = =1, according to whethex is a
down at such points. Thus, the MCR formulas are only primitive c00rdinate or momentum, respectively. As beforeand x,
semiclassical (PSC) expressions: they do not tend to the exac@® N-dimensional vectors whose elements are variables that
quantum results uniformly & — 0 for all x1,x,. This limits may be of either gender (coordinate or momentum), wiile
the usefulness of the MCR for direct applications. As a andyare vectors containing the variables conjugate;tand
consequence, the MCRs are often used as starting points for<» respectively. TheN-dimensional vectors andy contain
the derivation of uniform semiclassical (USC) approximafioks ~ variables of same gender asandy, respectively, so iky; is
that remain valid at the caustics. Generally, the development@ Momentum, thew; is also a momentum, whilg; andy; are
of such uniform treatments can be complicated for multidimen- coordinates. Similarlyx andy contain variables of same gender
sional system&:13 asx, andys,, respectively. _ ) _
A second problem that arises in applications of the MCR is , '" €d 3.1, the barred variabley) are considered to be

associated with the multivalued propertyfand the appear- functions of the integration variables,y) and are obtziined by
ance of the summation in eq 2.3. We note that each term in @PP!ying the canonical transformation generatedH¥,x) to

the summation corresponds to a particular poiatyf) [or, xy). Itis importan_t to note this proce_dure_yieldsaunique value
equivalently, ky»)] in phase space that is consistent with for the variablesx,y) and for the functiori(X,x) for each value
the given values of the variables:(x,). Finding such points ~ ©f (X¥). , _ ,
generally requires a numerical search. In some cases, the |nhe validity of this VR expression can be established by
number of points and, thus, the number of terms contributing N°tiNg that that it reduces to the MCR expression BafxlJ

to eq 2.3 can be very large, and their determination can be [€d 2-3] when the integrals are evaluated by the lowest-order
difficult. 14 stationary phase (SP) approximation. The details of the proof

In cases where the,|x,Crepresent propagatdfand wave are almost identical to those given in ref 15 and will not be
repeated here. Since such a SP treatment becomes exact in the

functions!®17 it is known that the problems described above e e ! .
can be alleviated by expressing these quantities as certainclassical limit (except at caustics), our expression approaches

integrals over classical trajectories. For the propagator case, thesd?€ MCR in the classical limit (except at caustics where the

integral expressions are usually known as initial value repre- MCR b_reak_down). This establishes that eq 3.1 is a semiclassical
sentation (IVR) formulag15.18-58 and we will use this term to ~ @PProximation. .

describe analogous integral expressions that arise for other cases, ! May seem surprising that eq 3.1 apparently lacks the

even when this name is not literally appropriate. Our objective SYMMetry implied by the relatiofa|x;[= Bu|x.[3. Neverthe-

in this paper is to convert the MCR directly to the IVR form so  1€SS: this symmetry property is obeyed by this expression. This

that the problems described above can be reduced for moreC@n P& shown by (a) using the result that the Jacobian for a
general kinds of%s|x,0] canonical transformation is unity to replace the integration

variables in eq 3.1 withx(y), i.e.

i N

[ll. Gaussian IVR Treatment of the MCR %I, = (znih) f % f dy Grz(Xz:XS’) «

A. Expressions.VR expressions of the MCR can essentially o o FERX)F% 1y .
be written down by inspection, in direct analogy with existing Clxyxy) e - Gfl(xl'x’y) (3-4)
IVR formulas for the propagatdf. As in the propagator case, . . o _
there are three principal forms for these expressions. We refer2nd (b) applying the “direct conditions” for a canonical
to these as being of types LR, L, or R, depending on whether transformatiof® to expres<C as
they contain Gaussian factors that depend on Betand x;, 1

N/2
only Xp, or only xi, respectively. Explicitly, the three forms  C(X,y;x,y) = (—) X

are: 2mih
- i I i I — —_ 1/2
1. LR-Form.In this case, the quantum amplitude is given by [de(a—y S 9 8_3_/1,2 i 2iSl“’{8—)_( 5— 4sT 8—)_(1“2)] (3.5)
ax ay ax ay
1 \N -
B, x, L= (%) f dx f dy Gp,(X2iX,y) x In the new expression fdR|x;[) the unbarred variables,§)

are regarded as functions of the barred variabtgg.(Compar-

- FRX)RA* oy
Clxyxy) € Gfl(xl’x'y) 3.1) ing eq 3.5 with eq 3.3, we see thHagx,y;x,y) = C(X,y;X,y)*, if
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I', and I'; are switched. Thus, recognizing th&(x,x) =
—F(x,X) [as implied by eq 2.2], it is clear that egs 3.1 and 3.4
are consistent with the expected symmetry property.

2. L-Form. For this case, the amplitud&;,|x;[Jis given by

1 \N o o o
B 0= () [ @y CrloR BRI, &7 (3.6)
where

- e 4\ FT
B(X,y;y,) = |def =~ — 2iISI'— 3.7
) =[oe(yy — a5 )] @7

and ,y) are regarded as functions of;fy;). Equations 3.6
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whereH is the classical Hamiltonian function ard and p,
are the coordinate and momentum at timalong a classical
trajectory fromq; to qo.

If this choice for generating function is substituted into the
MCR expression, eq 2.3, and the phase of the pre-exponential
factor is correctly interpreted, one obtains the well-known Van
Vleck8s3—Gutzwiller’* semiclassical expression for the propaga-
tor3 On the other hand, if this generating function is substituted
into our LR-form IVR expression, egs 3.1 and 3.3, we obtain

1 \N pat t
Ki(@) = (ﬁ) Jo 9 [ dpo Gr(a5:01py) x
(0P GoPo) €¥* "Gy (a1;00p0) (3.13)

and 3.7 may be derived from egs 3.1 and 3.3 by considering 5ng

the special case whel® = y;1 and then by letting/y — oo,
which produces ail-dimensionald functiond(x — X;) in the

integral. As in the case of the LR expression, eq 3.6 also reducesC(0yPsdoPo) =

to the PSC MCR formula when the integral oyeglis evaluated
by a SP treatment.

3. R-Form.Here, the quantum amplitude is given by the
expression

1 \N i "
X, |, (= (_Zth) S dys Alyzixy) €79 MGH(xxy) - (3.8)
where
ay . ox |42
Ay, Xxy) = [def—=-+ 2iST™*— 3.9
wixy) = [aefiy 25 @9

and ,y) are treated as functions ofx(y-). This result may be
derived from egs 3.4 and 3.5 by examining the case whgre
= y,1 in the limit asy, — «. When the integral ovey; is

1 N/2
2nih|
p, . 8, . p, aa, ) 172
de{— — + 20, — + 2 — I+ 40, — T 3.14
( 3o 290y~ app 1 Zdpy (3-14)

where §,y) has been replaced bgdpo), the initial coordinates
and momenta of the system at time 0, adyX has been
replaced by ¢:.,p:), the values of these variables after their
classical propagation to time Neitherqoe nor g; need to be
identical withq; or g2. We can recognize eq 3.13 as a slight
generalization of the well-known Hermailuk'8 semiclassical
propagator expression to the case where the matlixesay
be nondiagonal.

If we apply the generating function of eq 3.12 to our L-form
IVR expression, we obtain the following result for the propaga-
tor:

performed by the SP technique, eq 3.8 again reduces to Miller's Ki(@a,) =

PSC expression fdg,|x;[] verifying its status as a semiclassical
approximation.

It is possible to relate the IVR expressions presented above

to earlier work by Hell€i® and Weissmaf! who generalized
the MCR to situations where;[] |x2[) or both may be Gaussian

coherent states. At least in some cases, our IVR expressions

can be derived from their formulas f@x,|x;0by a technique
analogous to that recently applied by Grossmann and X&vier
to obtain the HermanKluk!® formula from the coherent state

1 N ok iS(a,
(M) J dp1 G0,y B(.pipy) €54 (3.15)
with

B(q.p.p.) = |d 0P 2'raqt . 3.16
(qt’ptipl)_ ea_pl I 3_|01 ( )

where &,y) has been replaced by and;f:), the variables

representation of the propagator. However, the approach to theobtained by running a trajectory from poirtf(py) at time 0 to
verification of our results used above is simpler and more easily time t. Equation 3.15 has been used, in various forms, as an

applicable for the treatment to be presented in section IV.
B. Examples. It is useful to verify that our general IVR
expressions reduce to familiar results in special cases.
1. Propagator.The time-dependent propagator (in the coor-
dinate representation) may be defined as

Ki(d,,0,) = [9,]9,0 (3.10)

where

g, = expiHt/h)|q,0 (3.11)
H is the Hamiltonian operator, angt are coordinates. The
generatorF for the dynamical transformation from variables
(q1,p1) at time 0 to (12,p2) at timet is given by the action integral
(Hamilton’s principal function)

0,0y = [;lpre, — H@.p)ldr  (3.12)

IVR expression for the propagator in several calculatf§{33”
Generally, it appears to be less accurate than the Heridkrk
approximatior?®

Finally, if the generating function of eq 3.12 is applied to
our R-form IVR expression, the semiclassical propagator
becomes

Ki(02.a,) =
1\N iS(q2, * .
(_ZJrh) fdpz AP2doPo) €59 G(ay:d0po) (3:17)

with

P . a%) vz
A(P,;q0,Po) = |def — + 2iIT* — 3.18
(P2:90:P0) [ (3[)2 o, ] ( )

where §,y) in eqgs 3.8 and 3.9 has been replaceddypp), the
variables obtained by propagating,) backward from time
t to time 0. Equation 3.17 is a final value representation (FVR)
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formula and is related to “time-reversed” expressions for the
propagator used in some semiclassical treatnfént&5’

2. Time-Independent Wa Function.In the notation of the
MCR, time-independent wave functions for integrable systems
are denoted by ;(q) = [q|J0) whereq denotes the coordinate
variables andJ represents the quantized action variables
associated with the state. TRe-type generating functioR(q,J)
for the transformation from action-angle variablekf] to
ordinary coordinates and momentgp() is Hamilton’s charac-
teristic function

Wa.3)= ["p"dg (3.19)

If this choice forF is substituted into the MCR expression, eq

Kay

If I' =yl andy — o, the L- and R-type IVR expres-
sions reduce to the PSC MCR formulas, eq 2.3. On the other
hand, if y — 0, these expressions tend to known integral
forms for X;|x;0that appear as intermediate quantities in the
derivation of the MCR Such integrals are evaluated by the
SP approximation to obtain the final PSC results summarized
in eq 2.3. Integral expressions of this kind were used compu-
tationally many years ago by MillérMarcusb6-57 and other&®
in the original semiclassical IVR and FVR treatments of the
Smatrix. More recently, sucly = 0 expressions have some-
times been used in semiclassical treatments of the propa-
gator2022-253157|t should be pointed out that although such
y = 0 integral forms do not diverge, they are, generally, only
PSC approximations. Like thg — o forms, they do not

2.3, and the phases Of the VariOUS terms in the sum are CorrectlyahNayS approach the exact quantum mechanica| resu|ts for a"

interpreted, one obtains the standard multidimensional WKB
semiclassical formula for the wave function. If, on the other

hand, this expression for the generating function is substituted
into our L-type IVR expression, egs 3.6, we obtain

1 \N o o W(G
wJ(q)=(ﬁ) J 96 Gr(a:a.p) B@p:6) €™ (3.20)
where

(3.21)

B(q,p;0) = [de(g_g _ar a_q)luz

00

To obtain these results, we have identified the followirg;y)

with the action and angle variablek®]); X, with g, the Cartesian
coordinate at which the wave function is to be evaluated; and
(x,y) with (g,p), the Cartesian coordinate and momentum
corresponding toJ,0).

The IVR expression for the wave function, eq 3.20, has been
previously presented and studi®d’ It resembles the frozen
Gaussian approximation (FGA) formula for the wave function
proposed earlier by Hellék.However, unlike the FGA, eq 3.20
becomes exact in the classical limit and is thus a true
semiclassical approximation. In addition, it has been shown that,
with appropriate choices foF, eq 3.20 is actually a USC
approximation that tends to the exact wave function uniformly
for all g ash — 0.1817Calculations verify that this semiclassical
treatment is capable of high accurdéy’

In additional to the L-type formula, eq 3.20, it is clearly

values of &3,x).15:16.26

The above choices fdr violate the condition that the real
part of all of its eigenvalues be positive and finite. In contrast,
choosingI’ to obey to this condition results in a number of
advantages:

1. The formulas for the propagator [egs 3.13, 3.15, and 3.17]
and the wave function [eq 3.20] are then USC approxima-
tions15-17

2. It is then unnecessary to include Maslov phase fatté#33

in expressions foXy|x1[] thus simplifying semiclassical calcula-
tions. Such factors are needed in cases whered or «, since

the pre-exponential factor can then become zero or infinite for
certain values of its arguments, causing the phase of this factor
to change discontinuously. However, wHeis chosen to obey

the condition described above, an extension of the analysis
presented in refs 15 and 69 shows that the pre-exponential
factorsC of eq 3.3 are always finite and do not vanish for real
values of their arguments, making Maslov indices unnecessary.
3. Finally, for the case of the propagator, such choicedfor
improve the numerical convergence of the integrals by causing
the integrands to decay in regions where their phase varies
rapidly 2632 This benefit should apply to the more general IVR
expressions presented here.

Unfortunately, despite these advantages, the IVR expressions
presented above are not as generally useful as are the original
MCR. We recall that much of the power of the MCR lies in
their applicability to arbitrary classical canonical variables

possible to propose LR- and R-type expressions for the wave (X1,X2), including choices such as spherical coordinates and
function on the basis of egs 3.1 and 3.8. However, such action-angle variables. This feature allows the MCR to simplify
expressions suffer from problems to be described toward thethe treatment of many systems by taking full advantage of
end of this Section and are not useful in their present form. ~ conservation laws and leads to natural and efficient semiclassical

C. Properties of the IVR Expressions.lt is worthwhile to expressions for the amplitudes of transitions between energy
review some of the properties of egs 3.1, 3.6, and 3.8 and discus€igenstates. However, the above IVR approximations cannot
how they overcome some of the difficulties of the MCR be applied with arbitrary choices of variables. The reason for
expressions. this limitation is that such choices require the|xi[0to obey

We first note that, unlike the MCR expressions, the VR certain characteristic boundary conditions at finite values,of
expressions folX,|x;(are free from infinite caustic singularities.  andxi. Typical examples are periodic boundary conditions at
The reason is that the canonical transformations generated by0 and 2t whenx; is an angle and regular boundary conditions
e.g.,F(x,x) produce %,y) that are finite, continuous functions  at the origin wherx; is a radial distance. The IVR expressions
of (x,y), so that the derivatives appearing in the pre-exponential are, however, generally unable satisfy these conditions due to
factors do not cause the integrals to diverge. Additionally, unlike the properties of the Gaussian fact@(x;,x,y) which are not
the MCR formulas, calculations based on the IVR expressions adapted to obeying specific forms of behavior at finiteT hus,
do not require searches: the variableandx; are fixed, while the L-type expression folXz/x;0cannot be made to satisfy
the remaining coordinates and momenta are either integrationspecific boundary conditions at finite values>gf the R-type
variables or are determined uniquely from the above variables expression cannot obey such conditions at firiteand the LR-
by applying a single-valued transformation. In many cases of type expression cannot be made to obey such conditions at finite
interest (including those of the propagator and wave function), values of eithex, or x;. Although these expressions are able
this transformation can be immediately obtained by a procedureto satisfy boundary conditions at— =oo, this only qualifies
that involves running specified classical trajectories. them for use when the variabl&sappearing in the Gaussians
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are Cartesian; they cannot be used for other kinds of variables.In terms of this expression, the matilixappearing in the pre-
As a result, our present expressions lack the power andexponential factors should be defined by
generality of the MCR.
A closely related problem with use of the IVR expressions _1 PP
in their present forms concerns the behavior of the factor W2 XK [0 —x
Gr(x1;x,y) as a function ofx when this variable and; are
defined for only a restricted range of values. Examples of such Note that theG defined in this way no longer needs to be
variables are the radial distance and the vibrational action, which Gaussian.
are defined only for positive values. In such cases, we cannot In addition to the factorss, the expressions for the pre-
rely on the SP method to make the IVR expressions accurateexponential factor#, B, andC appearing in the IVR formulas
for values ofx is near a boundary. We recall that the usual SP may be generalized by adding terms to them that only contribute
method is based on the assumptions that the integrand can bexigher powers ofi to the integrals. Even further generalizations
approximated by a Gaussian expression near the stationary poinbf the IVR forms are possiblebut need not be considered here.
X = x; and that the integration limits can be extended-to in For the cases of the wave function and the propagator, it is
both directions about such a point. However, these conditions possible to show that the IVR expressions remain USC
will not be obeyed when the integral contains only values for approximations, even under the relaxed conditions described
x on one side of the stationary point. Thus, the accuracy of an above!>17Thus, the factor§& may be replaced by more general
IVR expression near such a boundary must rely on very specific non-Gaussian formsincluding those appropriate for desired
properties of the integrand in this region. It can be anticipated boundary conditionswithout losing the basic advantages of
that the Gaussian form @& will not possess these necessary the IVR treatments.
properties in all cases. B. G from Classical Exact IVR Expressions.The appropri-
Although the boundary condition difficulties can sometimes ate functional expressions for the fact@sare, however, not
be sidestepped when the quantities to be calculated are notalways obvious. One approach to determining these expressions
sensitive to values ok near the boundary point3,these is based on the observation that, with the Gaussian restriction
problems cannot always be ignored. Some of the consequencesemoved, the new IVR form for the wave function [eq 3.20 as
of doing so are illustrated in ref 58 where use of the Herman  modified by eq 4.1] is so general that it allows one to express
Kluk propagator for non-Cartesian variables is shown to produce exact quantum mechanical wave functions for a variety of

(4.3)

errors in the computed autocorrelation spectrum. systems in this ostensibly “semiclassical” fofi? Such
) reference systems include some that are described in terms of
IV. Non-Gaussian IVR Treatment of the MCR non-Cartesian variables so that the wave functions obey the

A. General Requirements forG. Fortunately, it is possible ~ @Ppropriate corresponding boundary conditions. The functions
to generalize our expressions to make them valid for arbitrary G @ppearing in these classical exact (CE) expressions can be
choices of canonical variables, thus recovering the advantages/Sed to form IVR expressions for other target systems obeying
of the original MCR. We have mentioned that the feature Similar boundary conditions. Note that such choices¥pa,x,y)
limiting the boundary behavior of the present IVR expressions contain not only the correct dependencesario satisfy the
is the nature of the Gaussian fact@rn the integrals. Therefore, ~ desired boundary conditions but, less trivially, the correct
to allow more general boundary behavior, it is necessary to dependence or to yield accurate IVR results, at least for the
somehow replace the with more appropriate functions. treatment of wave functions for target systems resembling the

One possiblity is to replace GaussigBsvith particular sums ~ reference systems. . .
of Gaussians that enforce the desired boundary conditions. This Examples of reference systems for which CE expressions have
leads to IVR expressions that can be written as sums overPeen obtained includeé: " _ _
integrals, each being of the form given in egs 3.1, 3.6, or 3.8, _ 1. Harmonic Oscn_lator, Linear Potential, and Free Particle
containing Gaussian integrands. This approach was applied byl Cartesian Coordinatesfor such systems, the IVR wave
Reimers and Hellé? to adapt the FGA to periodic boundary ~function, eq 3.20, with the Gaussian form f8yeq 3.2, becomes
conditions. More recently, similar approaches were used by Sunidentical to the FGA wave function of Hellé?.It is further-
and Miller#3 Maitra5! and McCormac¥ to adapt IVR propaga- ~ More known that the FGA wave fupctlon can be maqle identical
tor expressions to such boundary conditions. Here, we describel© the exact quantum wave function, for the special systems

a more general strategy that includes the Gaussian sum methodSted above, by choosin to have certain value$.Of course,
as a special case. such wave functions obey specific boundary conditionsat

In our approach, we recognize that the Gaussian factors in @S is appropriate for .the Cartesjan coordinate rgpresentgtion.
our IVR expressions can be replaced by a wide variety of other Thus, this e.xample 'S|mply confirms tha}t Gaussian functions
forms, including those that allow the resultifitp|x1(1to obey are appropriate choices for the factdgsin IVR treatments
desired boundary conditions. This is possible because in orderOf target systems that are described in terms of Cartesian
for an IVR expression to be a semiclassical approximation, it Variables. ) , , ) ,
needs only to reduce to the PSC result when the integral is 2- Free Two-Dimensional Rotational MotioRor rotational
approximated by the SP method to the lowest ordét.iBut motion in two dimensions, the IVR wave function, eq 3.20, can
this is a rather weak condition. For it to be satisfied, it is 0€ expressed as

sufficient that the factor§ satisfyt>17.71 .
Y (¢)=N j;) do G,(¢';0.p,) x

; I. _ AP xy)/hR .
lim Gp(x'x.y) = € (4.1) (9p,90 — 2iy0gl00)> "™ (4.4)
where whereN is a normalization constang, is the rotational angle
coordinate,p, is the momentum conjugate t¢, L is the
D(X';x,y) ~ y'S(X' — x) + O(Ix" — x|%) (4.2) quantized action variable for the state of interest, sl the
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angle variable conjugate th. For the special case of free
rotational motiong = 0, p, = L = IA, with 1 =0, 1, ..., and
W = L6, so that the IVR wave function becomes
U j— ! 27[ s I

Pi(@) =N [ dp G,(¢':¢.p,) € (4.5)
where N' is another constant. By changing the integration
variable, it is clear thaty of eq 4.5 will be equal to the exact
quantum wave functiofl exp(l¢") for any choice of5(¢';¢,p,)
that is a Z-periodic function of¢’ — ¢. One example of such

a functionG, that is compatible with conditions of eqs 4.1 and
4.2,is

00

G, (@0 = > o O —0- 200 gpylé —o-2m (4 &)

k=—o0

which is similar to the choice applied in refs 43, 51, 52, and
70. Another possibiity, that we will examine numerically in
section V, is
I _ ' —¢)—1)A+ipgsin(' —¢)h
Gy((ﬁ ,¢’p¢) — e}/[00$(¢ ¢)—1)/h+ipsin@'—¢) (4_7)
Clearly, there is an infinite variety of other choices férthat
also yield the exact quantum wave function in this case. This
situation illustrates that, quite generally, CE expressions for

wave functions are not unique.
It is important to note that since the&efunctions obey the
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wherey is the orbital anglel. = Ah is the angular momentum
conjugate tgy, ¢ = 2y/h, andJy is the Bessel function of the
first kind.

In order for this form ofG to give the exact wave function
for free orbital motion, the parametgmust be chosen d92.
However, even with more general valuesjofthis form still
obeys the conditions of eqs 4.1 and 4.2, as can be proven by
examining the asymptotic approximation for the Bessel function
with large argument? consistent withth — 0. Thus, since this
choice forG enforces the boundary conditions associated with
orbital motion atd = 0 andzx, it can be used to form IVR
expressions for more general quantiti®xthat obey similar
boundary conditions

It should be mentioned that the boundary conditions for orbital
motion generally depend on the value of the azimuthal quantum
numberm. The expression fo6 presented here is valid only
for m= 0. A somewhat more complicated expressionois
available for the more general cae.

C. G for Action Variables. In the above examples, the
variablex, in Xy|x;0was a particular kind of coordinate. To
find forms for G that are appropriate for L- and LR-type IVR
expressions wher; is an action variablel, we use a some-
what different approach which we outline below for the one-
dimensional casél|x[

We first, express the quantity of interedil|x(] in the
form

QIxC= JD|qg|xdg (4.10)

conditions of egs 4.1 and 4.2, despite their non-Gaussian forms,

a SP treatment of the integral in eq 4.4 still yields the correct
PSC result. Furthermore, since these choicesGosatisfy
periodic boundary conditions @ = 0 and 2r, they can be
used to form IVR expressions for wave functions (or other
quantities[@'|x[) for more general systems that obey similar
boundary conditions.

3. Radial Wae Functions for the Isotropic Three-Dimen-
sional Harmonic Oscilator, the Coulombic System, and the Free
Particle. For the above systems, it can be shéWwrthat the
radial wave function®(r'), associated with angular momentum
guantum numbel, can be expressed exactly in IVR form [eq
3.20] if the factorG is taken as

" — (p1/p) @ R —02=(+172)( I 1) Jp(r' )ik
G,(r';rpy) = (r'lr) e VMO O (4.8)

and the parameter is chosen appropriately. We observe that
this form guarantees th&(r') obeys regular boundary condi-
tions atr' = 0. We also note that this form satisfies the
conditions of eqs 4.1 and 4.2. Thus, our IVR expressions with
this form of G can be used to obtain semiclassical approxima-
tions for radial wave functions of other systems and for other
quantities’|x[] when stategx[is characterized by a definite
value for the angular momentum.

4. Free Orbital Motion.The wave functions for free orbital
motion corresponding to azimuthal quantum nuntber 0 are
the Legendre polynomial$?(cos 6). These functions can be
expressed exactly in IVR form, using eq 3.20, if the facBr
in eq 3.20 is chosen &s

G,(0;x.L) = v—27i sinf x
(4 cosy —ic siny)
Jolsin B(4 cosy — ic siny)] (4.9)

1/2 e—c—é—cos‘)(ccosg—llsm) x

= [,(0)* [G|xdg (4.11)
where q is a coordinate variable ang;(q) = [¢|Jdis the
time-independent wave function for stafdl] Substituting
the L- or LR-IVR forms for[g|xCinto eq 4.11, we find that
we can expressl|xin terms of an integral containing the
quantity

D,(J;a,0) = f day,(a)*G,(aa.p) (4.12)

On the basis of the IVR form dfJ|x[] we expect the evaluation

of D to yield a factorG'(J;J,0) obeying the conditions of egs
4.1 and 4.2, wherel and 0 are action and angle variables
corresponding togp). It is this factor that we wish to determine.
For the general case, we could proceed by evaluating the integral
in eq 4.12 by the SP method using a WKB expressionyfor
but this technique is not powerful enough to describe the precise
form of G' for general values aJ andJ. Instead, to learn how

G' should look in order that it incorporate the boundary
conditions for variables) and J, we consider model cases
where the IVR expression far;(q) is exact, the corresponding
G,(a;0,p) is known, and the integral overin eq 4.12 can be
performed analytically.

As an example of such a model treatment, we consider
the case of the one-dimensional harmonic oscillator in state
n so thaty,(g) [with J = (n + 1/2)4] is known analyti-
cally. Furthermore, as mentioned above, the IVR expression
for y4(q) [eq 3.20] is exact in this case &,(0;q,p) is chosen
to be a Gaussian [eq 3.2] with a certain value jorThis
value turns out to baw/2 8% whereu andw are, respectively,
the oscillator mass and frequency. Since eq 3.20vfg(q)
is an L-type IVR formula forlg|J0 (i.e., it is equivalent to
an R-type expression fdd|ql) it does not, by itself, contain
the desired factoG’(J;j,é). Nevertheless, such a factor can
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be deduced by evaluating the integral oy analytically to 1.0
obtain’® s 05 4
6 .
_ o (=
D,(Jap) = d@.6) e "G 3,30  (4.13) & 00
& 05 _
where 2 n=11
-1.0 T T T
1.0
- a_ = o
F,@J) = /"pQ) dg (4.14) g o5
o A eié 1/2 S 00 4
dJ,0) = ( ) (4.15) v
V2uw § -0.5
n=7
and the functiorG; is given by a0 ‘ ‘
c
[=]
sy | V2R ani-aienyaa-am g 057
G,(3;3,0) —( . ) e (4.16) E’ 0o
()]
> -
for the special case. = 1. WhenJ is large, eq 4.16 can be § 0 n=3
somewhat simplified using Stirling’s approximation to obtain 1.0 . | .
o L - 15
G.(33,0) = INII=3+3)/(2h) JOQA-)/h (4.17) o
R
Equation 4.13 is just the form f@® needed to convert eq 4.11 > 54
to the expected IVR form. The factor expif2/f) combines 5 -
with the factor containing the generating function gx0 10 . ‘ :
to form the exponential factor exp(h) for [J|x[] while d 0.00 157 314 471 6.28
combines with the pre-exponential factor ifx(Jto yield ®

the appropriate pre-exponential factor fdixC] The function
G] is the Gaussian-replacement factor we have sought. Indeed

whenfi — 0 (so thatl/i is large) andJ — J| small, a Taylor rotor. The bottom panel shows the potential energy ciigd = Vo
expansion of the exponent in eq 4.17 shows Gjabecomes a  cos ¢ for the system with the energy levels for the states treated
GaussiarGy43(J;J,0) as defined by eq 3.2, consistent with the indicated by heavy horizontal lines.
requirements of egs 4.1 and 4.2.

Thus,G|, (with o not necessarily equal to 1) can serve as the obtain semiclassical approximations for quantitigeg/x;(Jin
appropriate factoiG for a semiclassical L- or LR-type IVR  cases where thg are not Cartesian variables.
treatment of[J|x[] whereJ is a vibrational action. Although A. Hindered Rotor. We begin with a simple numerical
derived for the harmonic oscillator, numerical results confirm example in which we use an IVR treatment to calculate wave
that this form can be used semiclassically to describe vibrational functions obeying periodic boundary conditions associated with
states of more general anharmonic oscillators as el nonfree two-dimensional rotational motion.
contrast, the use of Gaussian expressions@¢d;J,0) in L- We wish to obtain semiclassical eigenfunctions of the
and LR-type IVR treatments dil|x(is found to yield results ~ hindered rotor Hamiltonian
of much lower accuracy for small valuesgfeven for harmonic
systemg?>76 ~

Since the vibrational actiond and J are defined only for
nonnegative values, it is of interest to examine the limiting
boundary behavior o5’ when these variables become zero.
From eq 4.16, we see th& has a finite value aj = 0 (G'
would be 0 at] = —A/2 corresponding te = —1). Perhaps
more significantly, eqs 4.16 and 4.17 show t@atpproaches

zero as a positive power dfin the limit J — 0 (except when o 4 4 for the state with quantum numbemust be calculated
J=0). Gaussian expressions f6f cannot produce this behavior  o+'the semiclassical enerdy for that state, as determined by
thst IS apl)parently .rﬁqluwed Ifor tg? accurate description of yhe wKp quantization condition. For levels above the potential
vibrational states with low values barrier, this condition yields two degenerate levels, and the IVR

fi M?thOds sllmr:lar to the one _|Ilus$rated _here can b_e used_ ;‘0 treatment produces two corresponding wave functions. For
ind factorsG' that are appropriate for actions associated wit comparison with the quantum results, we form linear combina-

othgr kinds of motion. For example’ such a factor for .rotat|onal tions of such semiclassical wave functions to create functions
actions can be derived by treating the case wigpelis the having definite inversion symmetry abomt

spherical harmonic, in which case a CE expression is again - tg |yR wave functions obtained were found to be not very
knownf* andD can again be evaluated analytically. sensitive to the value of parametgr The valuey = 6.6,

consistent with the conditiop = uw/2 for harmonic-like low

energy states, was used for all levels in our calculation. Some
In this Section we present some examples that illustrate how resulting semiclassical wave functions are shown in Figure 1,

IVR methods can be applied, with non-Gaussian fact@rto where they are compared with accurate quantum results. It is

Figure 1. Semiclassical IVR wave functions (heavy curves) and
guantum wave functions (light curves) for three states of the hindered

. h
H=—->-—+V,cos¢' 5.1
2,14 d¢'2 0 ( )
for parameter valuegs = A = 1, andVp = 10.0. Our treatment
is based on eq 4.4 for the wave functign(¢') with eq 4.7 for
the factorG,(¢';¢,py).
The quantitiesp(6,L), ps(0.L), W(O,L), etc., appearing in

V. Examples
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apparent that the semiclassical wave functions obey the correctwith

periodic boundary conditions at angles 0 anda?d are in very

good agreement with the quantum wave functions for all values

of the angle. Although the figure shows results for only three

states, the degree of semiclassical/quantum agreement was found

to be no worse for other states examined.

B. S-Matrix for Collinear Scattering. We now apply the
IVR form of the correspondence relations to derive a useful
semiclassical expression for tBematrix describing transitions
between vibrational states andn; in a collinear collision at
energyE.

Our treatment begins with the well-known PSC expression
for the Smatrix derived by Millet=#%677.78and Marcu&5”

¥P®d(n,n,)on,on, |2 [id(n,n,)

ex (5.2)

S @ =13

where then/’s are defined agi/h — Y, in terms of the initial
(i = 1) and final { = 2) vibrational actions);. Then; are thus

b oG
ij_ﬁzlj

[ ho; Yon
Tilon 1 a0l (5-8)
and theoy are parameters.

The above derivation is simple and direct. An alternate
approach derives eq 5.5 from an asymptotic analysis of the IVR
expression for the wave function, eq 320’his requires much
more effort but provides several important insights. For example,
since eq 3.20 is a USC expression and the derivation of eq 5.5
with 0 < Rog < o does not involve steps that degrade its
uniform quality, it is possible to conclude that eq 5.5 is itself a
USC approximation, provided that thg are chosen to obey
these conditions.

Further aspects of our IVR expression ferare discussed
elsewheré? where numerical results are also reported for the
Secrest-Johnséhcollisional model. Here we only summarize
some of the major characteristics of eq 5.5.

momentum-type classical variables corresponding to vibrational 1. This expression reduces to the PSC formula for $he

guantum numbers. The coordinate variables conjugate to; the
are denoted here by, = A(0; — wuR/P;), whereéy's are the
initial or final vibrational angle variableg, is the reduced mass
for the collision, o's are the vibrational frequencies of the
fragments, andR;,P;)’s are the initial or final translational
distance and momentum. In the work of Miller and Marcus,
the coordinates); are denoted by symbols with overbars, but
we do not adopt this notation here to avoid confusion with our
variables X,y). Finally, the quantity

®(n,n,) = [ dt [-ROP(t) — hO©) N(D)]

appearing in eq 5.2 is the generating function for the transfor-
mation betweenn(,q:) and §2,g2) for the N — 1 vibrational
degrees of freedom.

Referring to eq 2.3, we see that we can express eq 5.2 as

Sy, (E) = i[,In,00 (5.4)

(5.3)

in MCR notation. This immediately allows us to use eq 3.6 to
express th&matrix as an L-type IVR formula. We need only
substitute:x; = N1, y1 = q1, X2 = N2, Y2 = (2, andx = n(Ny,q1),

y = q(n1,q1), wheren andq are the final values of the classical

matrix, eq 5.2, asy — « and becomes identical to the original
Miller —Marcus IVR expressidi$6-67for the Smatrix asox — 0,
for all k.
2. The numerical studies confirm expectations [based on the
uniform properties of eq 5.5] that choices @ obeying 0<
Roay < o« give results that are generally much more accurate
than either eq 5.2 or the MillerMarcus IVR treatment.
3. The non-Gaussian form @' given in eq 5.6 is found to be
essential for achieving such accuracy for low valuesof
Since our IVR expression involves only &i-1-fold inte-
gration, it yields theSmatrix at a particular energy using
far fewer trajectories than would be needed for a treatment
directly based on the semiclassical IVR propag&tdPf.In
the latter case, the dimensionality of the integrationsN r
2N — 1,%05354depending on the formulation. The difference
betweenN — 1 and, say, R — 1 is extremely important in
practice since the computational labor in typical IVR calcu-
lations increases exponentially with the dimensionality of the
integrations®°
Itis clear that, in additional to the L-type expression obtained
above, it is possible to derive R-type LR-type expressions for
the S'matrix, in analogy with the FVR-%8and double-integral
IVR treatment& 77 of classicalS-matrix theory. The usefulness

quantum number and coordinate variables obtained from initial of such treatments remains to be fully investigated.

values (11,0;1). Of course, these final values need not be equal
to (n2,02). In addition, we use a multidimensional generalization
of G,(J;J,0) [eq 4.17] in place of the functio since our

variablesn are related to vibrational actions. The final result is

Si,n,(B) =
i 1 Nflf da. G (. B(n.a: [Pk (5 5
o 41 Go(nzin,0) B(n,q:ay) € (5.5)
where
Gy(nzn,q) =
N-1q n+ ",
ex Z— (Ny+ 1/2) In — N+ nylp x
k= 2 nzk + 1/2

explig'(n — n,)/H] (5.6)

B(n,q;0,) = [det(;)]"? (5.7)

C. Differential Cross Section for Elastic Scattering.As a
final example, we use our form of the correspondence relations
to derive an IVR expression for the differential cross section of
elastic atom-atom scattering. We begin by recalling some basic
guantum mechanical results that we will need. The differential
cross section for scattering from a spherically symmetric
potential is given by

do/dQ = | f(6)? (5.9)
The scattering amplitudé can be expressed in terms of the
partial wave sum

f(6) = 1 @ + D[ — 1]P(cosh)  (5.10)
2ik ; ! '

where, are phase shifts for the scattering of theh partial
wave andk = v/(2mEA2), whereE is the energy of the system
andm is the reduced mass for the collision partners.
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The scattering amplitude can be approximated semiclassicallyfunction for particles with angular momentubi. The IVR
by the well-known PSC formut&=80.81 expression obtained in this way is

— il "\1/2
1) = —iZ( ; ‘%Dmé[%n(u_”]’hﬂ”” EPU Ch= T
h2I¢ sin 19x . ,

JodLALyL) €O IR GE gy L) (5.16)
where the sum is taken over impact paramekefsr particles
that are initially moving parallel to the-axis atz = —c and which we henceforth apply for the cage= 0. Using eq 3.9,
that are scattered into angk (measured from the positive  we immediately find the pre-exponential factérto be
z-axis) from the target located at the origjnis the deflection

function describing the signed asymptotic angle between the AlLy,L)=(@1+ 2iy8;g/8L)1/2 (5.17)
outgoing particle and the positiveaxis asz — . Thus, the _ N ) )
observed scattering angl®, is an unsigned version of Sincef(6") must obey boundary conditions for orbital motion,

restricted to the range [8]. L = bfik is the angular momentum  the appropriate choice for the functi@in eq 5.16 is the form
of the particle, andy(L) is the semiclassical phase shift, given diven in eq 4.9. Substituting that expression gives

by

f(6) = Wl( 7 1AM+ caylon) 2@
n(L) =

1 cosy + ic sin 1/2 e—c ecosﬂ’(ccosg-%—iisiry)
K2 212 Ln} ( 74 %) X

. R1
le'i'l{ Je E[sz 2R — | dRTKRH S 34sin 6'(A cosy, + ic siny)] (5.18)

(5.12) whereA = L/Ah andc = 2y*/A. In presenting this result, we
have brought the factdr''2 in eq 5.16 within the integral as
where V(R) is the potential energy function ar@- is the |12 Thjs is valid since a SP treatment of the integral will
distance of closest approach of the particle to the target. The yroduce the entire pre-exponential factor at the stationary phase
choice of sign in thet phase term of eq 5.11 depends on the point, whereL = L'
branch of the deflection functiot.%5* To allow a comparison with the quantum expressionffor
To derive an IVR expression fdy we temporarily consider ~ we examine eq 5.18 in the special case A, where we can
a more general scattering scenario in which the particles in the simplify our expression usirg
incoming beam do not necessarily move parallet-tixis but

are incident at an asymtotic angfe as measured from the o o il )
negatve zaxis. We will eventually setp to zero. Then the &% J(zsin ") = Z;I_'PI(COSB) (5.19)
quantity ==
_ When this identity is substituted into eq 5.18 and the resulting
F(px) = 2hn(L) — Ly (5.13) integral is evaluated term by term in the SP approximation, we
obtain

appearing in the exponent of eq 5.11 can be identifiedfas a

type generating function for the canonical tranformation between 1 _

the asymptotic variablesp(L) and ¢,L), where the angular f(0")=— Z}(ZI +2) ez'”‘Pl(cose') (5.20)
momentumL is conserved. Indeed, using the known relation 2k &

2homloL = y,128081and recalling thag andy are measured

from different directions along the-axis, it is easy to show where, in this expressiomy = y[L = (I + 1/2)i]. The form
that of this result differs from that of the exact partial wave

expression, eq 5.10, in two ways: the first factor in each term
here is (2 + 2) instead (R+ 1), and the second factor in each
term here is? instead ofe? — 1.

The first difference becomes negligible in the classical limit
where many partial waves contributeftdtill, this discrepancy
can be removed by replacing the factéf in the integrand of
eq 5.18 withA¥2 — 1/(22%3). This step is justified since it only
adds a term to the pre-exponential factor that is of higher order
1/— 27l "\L2 in A than is the factor itself. As explained in the paragraph
__( - ! ,) 9ly'0 (5.15) following eq 4.3, such modifications of IVR expressions are
ik\f sin 6 permissible.

) ) . Concerning the second difference, it is known that the
in terms of MCR notation, where we have added primes to the aqditional term in the quantum expression for the scattering
final scattering variables for future convenience. amplitude is singular and affects only the valud(@f) at6' =

We are now in a position to derive an R-type IVR expression 0128081 |ts role is to remove fronf an infinite contribution
for the scattering amplitude. We simply apply eq 3.8 for the arising from the flux in the forward direction due to the free
inner product,|x;Cwith the substitutions ofy,L") for (x1,y1), motion of particles with large impact parameters. This correction
(p,L) for (x2,y2), and (L),L) for (x)y). In this treatment, the  can be incorporated in our IVR treatment simply by subtracting
quantityy(L) is the deflection function for particles with angular  from eq 5.18 the expression that would be obtained by applying
momentumL and needs not coincide witif, the deflection eq 5.18 for free particle motion (in which cage= 0, n = 0).

IF(py)lop = L F(py)ay=—-L (5.14)

consistent with eq 2.2. This observation allows us to express
the derivative thgolL/dy| appearing in eq 5.11 d8%F/d¢pay|.
Comparison with eq 2.3 thus shows that the PSC formul for
eq 5.11, can be written as

f(0) =
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sind do/dQ

Figure 2. Differential cross section for elastic scattering. The heavy
curve is obtained from the IVR approximation, while the light curve is
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method yields good agreement with the partial wave results for
all values off), including those in the rainbow scattering region
(6 = 1.5 rad in the present case) and the small-angle region,
where the PSC results become highly innacurate. However, the
quality of the IVR cross section fat > 6, which contains an
oscillatory contribution from classically forbidden scattering,
deteriorates whefi — 0, becomes too large. This is an example
of a known difficulty?” that limits the accuracy of the IVR
treatment for strongly forbidden classical processes.

Itis important to note that, for the case treated, our expression
for f(6") requires only about 75 trajectories [each corresponding
to a value ofL, (L), andz(L)] to achieve convergence for all
angleso'. This is about/, the number of trajectories needed
by the partial wave sum or its integral approximants to achieve
convergence. Indeed, these other approximations, when applied
with only 75 trajectories, are unable to reproduce the converged
results even qualitatively. Furthermore, our treatment requires

obtained from the partial wave expansion. The inset shows the crossf@Wer trajectories than would be needed by the PSC or the more

section for small values of the angle.

With these modifications our final result for the scattering
amplitude becomes
n_ Ll pe _ :
() = 5 J37dA = ') e (1 + icay/a2) (A cosy +
ic sinx)llz /1—1/2 ei(zn—/lx) ecosﬂ’(ccosﬁilsirlx) JO[(;{ cosy +

ic siny) sin@'] — €°°¥ J (A sin@')} (5.21)

This expression can also be derived, albeit with more effort,
from an asymptotic analysis of the IVR expression for the
scattering wave function, eq 3.20. Since this wave function

conventional USC treatmedts$%83to produce the approximately
50 oscillations appearing in Figure 2. Thus, the present IVR
treatment makes efficient use of trajectories to describe the
semiclassical differential cross section.

The significance of these results is that they show that
calculations of cross sections can be performed accurately by
IVR methods that directly parallel the classical approach and
avoid partial wave summations. It should be possible to
generalize the work described here to develop similar IVR
treatments of molecular inelastic and reactive scattering cross
sections.

VI. Summary and Discussion

expression is a USC approximation and no steps are introduced We have investigated the possibility of re-expressing the
in the derivation of eq 5.21 that degrade this property, eq 5.21 Miller correspondence rules in IVR form as a means of

is itself a uniform approximation. It thus yields accurate
semiclassical results for all values 6%, including those for

alleviating a number of difficulties that arise in their application.
Although it is rather obvious how to do so in terms of integrals

which the PSC expression, eq 5.11, diverges. These valuescontaining Gaussian factors, such expressions do not capture

include the rainbow anglé);, where ¢'/dL = 0, the forward
direction, ¢’ = 0, and the backward directiof?, = .

Our IVR result is somewhat reminiscent of certain semiclas-
sical expressions fof(0') that are obtained by replacing the

the power and generality of the original MCR since they are
only appropriate for Cartesian variables. The key to a more
useful generalization of the MCR is to replace the Gaussian
factors with functions obeying the specific boundary conditions

partial wave sum with an integral and substituting various needed to treat non-Cartesian variables. We have suggested that
asymptotic approximations for the Legendre polynomials (some such non-Gaussian functions can be chosen as factors appearing
of which involve the Bessel functiady).1?8%81However, unlike in IVR expressions for the exact wave functions of certain

the present result, these non-IVR approximations break down reference systems. We have presented examples of such factors

either at@' = 0 or r or at both angles. Other semiclassical
expressions fof that are uniform in various restricted regions
are knowrf®-82 A uniform expression that is valid both for glory
(¢’ = 0, m) and rainbow scattering was derived by Milfér.

To test the accuracy our result, we apply it to scattering from
the Lennare-Jones potential

V(R) = 4€[(R/R)"* — (RyR)’]

We set the parameters in our calculationB& = 1.6 and
(2mBY2Ry/A = 60 so that the numerical results can be readily
compared with those of other semiclassical treatm&nthe

(5.22)

and have illustrated the theory with a few applications.

These applications demonstrate that the IVR formulation of
the MCR is capable of producing semiclassical results that obey
the correct boundary conditions, are free of caustic singularities,
and are uniformly accurate for the full range of variables. From
the computational standpoint, IVR treatments are convenient
since they do not require numerical searches and, when properly
formulated, do not require calculation of Maslov indices.

The IVR expressions presented here for$matrix and the
elastic cross section illustrate the value of formulating IVR
treatments so that they directly produce the final quantities of
interest and make use of the specific sets of variables that

scattering amplitudes are not strongly dependent on the valuesimplify the physical problems. This can lead to great savings

of y or c used in the IVR calculation. The results shown here
are obtained using = 0.24.

in computational labor over the extraction of such quantities
from IVR treatments of the propagator or the wave function in

Figure 2 compares the semiclassical differential cross section,the Cartesian coordinate representation. For example, a brute-

calculated from eq 5.21, with that obtained from the partial wave

force calculation of the elastic scattering cross section based

expansion, eq 5.10, using semiclassical phase shifts. Theseon the HermanKluk IVR propagator would involve a full
results, in turn, may be compared with those reported in ref 12 three-dimensional treatment of the collision and would require

for additional treatments of this system. We see that the IVR

the numerical evaluation of a six-dimensional integral. This
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would necessitate several orders of magnitude more computa- (18) Herman, M. F.; Kluk, EhChethhysl984 91, 27. Kluk, E.;
Herman, M. F.; Davis, H LJ. Chem. Phys1986 84, 326.
tional effort than the evaluation of the single |_ntegral of eq 5.21. (19) Miller, W. H.J. Chem. Physi991, 95, 9428, Heller. E. 43, Chem.
Although such a propagator-based calculation would have the pryg 1991 o5, 9431.
advantage of producing the cross section for a range of energies (20) Sepulveda, M. A.; Heller, E. J. Chem. Phys1994 101, 8004.
rather than at a single energy, this would come at a price far  (21) Campolieti, G.; Brumer, Rl. Chem. Phys1992 96, 5969.
too high to make such a treatment worthwhile in any realistic ~ (22) Gampolieti, G.; Brumer, FPhys. Re. A 1994 50, 997.
- . (23) Campolieti, G.; Brumer, FPhys. Re. A 1996 53, 2958.
case. The focus of our work here has been to address difficulties  (24) campolieti, G.: Brumer, Rl. Chem. Phys1997, 107, 791.
concerning boundary conditions, to allow the development of  (25) Provost, D.; Brumer, FPhys. Re. Lett. 1995 74, 250.
such efficient IVR treatments that are taylored specifically to (g% an, ﬁ g 3] gﬂem EEYiggi ig% ‘21‘31%
" . ay, em. Phy.
the quantities and systems of interest. (28) Walton, A. R.; Manolopoulos, D. EEhem. Phys. Letll995 224,
It should be clear that, beyond the few examples presentedas4sg; Mol. Phys.199687, 961.
here, many other applications of the present formalism are (29) Brewer, M. L.; Hulme, J. S.; Manolopolous, D. E.Chem. Phys.
possible. Indeed, some further simple examples of this approach!998 106 4832.
have b ’ d elsewhErdl i addit h (30) Brewer, M. L.J. Chem. Phys1999 111, 6168.
ave been presented elsewh€rglowever, In addition to these, (31) Spath, B. W.; Miller, W. HChem. Phys. LetL99§ 262, 486.

several more potential applications readily come to mind. The  (32) Spath, B. W.; Miller, W. HJ. Chem. Phys1996 104, 95.
most intriguing of such ideas involve the further exploitation gi; grossmann, ESEem.RPh)E.lléggﬂggt‘alZ?%Zl 470.

: H : rossmann, H’nys. Re. A .
of expressions such as eq _4.17 that ultimately allow ma_ltrlx (35) Sepulveda, M. A.: Grossmann, &ds. Chem. Phys1996 96, 191.
elements between energy eigenstates to be expressed directly (3) Garashchuk, S.; Tannor, @hem. Phys. Lett1996 262, 477.
in IVR form. This should make it possible to develop novel Garashchuk, S.; Grossmann, F.; TannorJDChem. Soc., Faraday Trans.
semiclassical treatments of spectroscopic, photochemical, andl99;793K781K 6.3, Chem. Physi997 107 2313.
collisional transition amplitudes that may be more efficient than (57 K&, em. Py

. L . (38) Makri, N.; Thomson, KChem. Phys. Lett. 199291, 101.
those currently in use. Several of these applications are being (39) Thomson, K.; Makri, NJ. Chem. Phys1999 110, 1343.

actively investigated® (40) Skinner, D. E.; Miller, W. HChem. Phys. Lettl999 399, 20.
However, to develop many further applications, it will be _(41) Sun, X.; Miller, W. H.J. Chem. Phys1999 110, 6635;1999 111,

necessary to derive expressions for additional fac@hat (42) Sun, X.: Miller, W. H.J. Chem. Phys1997, 106, 916.

are appropriate for the treatment of a wider variety of boundary  (43) Sun, X.; Miller, W. H.J. Chem. Phys1998 108 8870.

conditions. It is clear that the quantitigls|x;[that are of interest (44) Sun, X.; Miller, W. H.J. Chem. Phys1997 106, 6346.

(45) Sun, S. X.J. Chem. Phys200Q 112, 8241.

for polyatomic systems satisfy many different forms of boundary (46) Wang, T. B.: Thoss, M.: Miller, W. H0. Chem. Phy200q 112

conditions, depending on the cases treated and identity of they7.
variablesx;. The set ofG presented in this paper does not suffice (47) Batista, V. S.; Miller, W. HJ. Chem. Phys1998 108 498.
to cover all situations of practical importance. As a particular _ (48) Coronado E. A.; Batista, V. S.; Miller, W. H. Chem. Phy=200Q

example, expressions analogous to eq 5.5, describing the matri (48)5656tbck G.. Thoss, MPhys. Re. Lett. 1997 78, 578. Thoss, M.:

element§ 1 (E) for rotational scattering from an anisotropic  Stock, G.Phys. Re. A 1999 59, 64.
potential, would require an as-yet unknown form@tfhat is (50) Ovchinnikov, M.; Apkarian, V. AJ. Chem. Physl998 108 2277.

consistent with the boundary conditions foandj’ arising from gg M?g?{mNagk CS‘eX“j ngi?oghtléogglilz 992,
conservation of the total angular momentdmMiore work is (53) Elran, Y.; Kay, K. G.J. Chem. Phys1999 110, 3653.

needed to derive such expressions and the development of CE (54) Elran, Y.; Kay, K. G.J. Chem. Phys1999 110, 8912.
treatments for additional reference systems would be a useful (55) Herman, ‘M. FChem. Phys. Lettl998 275 445. Guerin, B. E.;
step in this direction Herman, M. F.Chem. Phys. Lettl998 286, 361.

) (56) Herman, M. F.; Coker, D. K. Chem. Phys1999 111, 1801.
(57) McQuarrie, B. R.; Brumer, RChem. Phys. Let200Q 319, 27.

; (58) van de Sand, G.; Rost, J. lRhys. Re. A 1999 59, 1723.
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